Con lắc đơn gồm vật nhỏ có khối lượng 1g treo vào sợi dây nhẹ, không dãn, tại nơi có g=10m/s2, trong điện trường đều có vecto cường độ điện trường E nằm ngang, độ lớn E=1000V/m. Khi vật chưa tích điện, chu kì dao động điều hòa của con lắc là T. Khi con lắc tích điện q, chu kì dao động điều hòa của con lắc là 0,841T. Độ lớn điện tích q là
A.
\(
\sqrt 2 {.10^{ - 2}}C\)
B.
\(
\sqrt 2 {.10^{ - 5}}C\)
C.
\(
10^{ - 2}C\)
D.
\(
10^{ - 5}C\)
Lời giải của giáo viên
+ Khi con lắc chưa tích điện, chu kì dao động của con lắc:
\( T = 2\pi \sqrt {\frac{l}{g}} \)
+ Khi con lắc tích điện, đặt trong điện trường nằm ngang thì nó chịu thêm tác dụng của lực điện theo phương ngang
Chu kì dao động của con lắc tích điện q đặt trong điện trường đều là: \(T' = 2\pi \sqrt {\frac{l}{g'}} \)
+ Gia tốc trọng trường hiệu dụng của con lắc là: \( g' = \sqrt {{g^2} + {{(\frac{{\left| q \right|E}}{m})}^2}} \)
Chu kì của con lắc trong điện trường là:
\(\begin{array}{l} T' = 2\pi \sqrt {\frac{l}{{g'}}} = 2\pi \sqrt {\frac{1}{{\sqrt {{g^2} + {{(\frac{{\left| q \right|E}}{m})}^2}} }}} = 0,841T\\ \Rightarrow 2\pi \sqrt {\frac{1}{{\sqrt {{g^2} + {{(\frac{{\left| q \right|E}}{m})}^2}} }}} = 0,841.2\pi \sqrt {\frac{l}{g}} \Leftrightarrow \sqrt {{g^2} + {{(\frac{{\left| q \right|E}}{m})}^2}} = \frac{g}{{{{0,841}^2}}}\\ \Leftrightarrow {g^2} + {(\frac{{\left| q \right|E}}{m})^2} = \frac{{{g^2}}}{{{{0,841}^4}}} \to {10^2} + {(\frac{{\left| q \right|.1000}}{{{{1.10}^{ - 3}}}})^2} = \frac{{{{10}^2}}}{{{{0,841}^4}}} \to \left| q \right| \approx {1.10^{ - 5}}C \end{array}\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho mạch điện kín gồm nguồn điện có suất điện động E = 12V, điện trở trong r = 2,5Ω,mạch ngoài gồm điện trở R1=0,5Ω mắc nối tiếp với một biến trở R. Giá trị của R để công suất tiêu thụ trên biến trở R đạt giá trị cực đại là:
Xét hai dao động điều hòa cùng phương, cùng tần số, độ lệch pha không đổi theo thời gian.Dao động thứ nhất có biên độ A1 và pha ban đầu \(
{\varphi _1}\), dao động thứ hai có biên độ A2 và pha ban đầu \(
{\varphi _2}\). Pha ban đầu của dao động tổng hợp xác định bởi công thức:
Một vật dao động điều hòa với chu kì T. Động năng của vật này biến thiên điều hòa với chu kì
Một vật dao động điều hòa trên trục Ox theo phương trình \(
x = A\cos (\frac{\pi }{3}t + \varphi )\)( t tính bằng s). Trong ba khoảng thời gian theo thứ tự liên tiếp nhau là \(
\Delta t = 1s,\Delta {t_2} = \Delta {t_3} = 2s\) thì quãng đườngchuyển động của vật lần lượt là S1=5cm, S2=15cm và S3. Quãng đường S3 gần nhất với kết quả nào sau đây?
Một con lắc đơn đang dao động điều hòa với biên độ góc bằng 9o. Ở thời điểm t0, vật nhỏ của con lắc có li độ góc và li độ cung lần lượt là 4,5o và 2,5π cm. Lấy g = 10 m/s2. Tốc độ của vật ởthời điểm t0
Con lắc lò xo gồm vật nhỏ gắn với lò xo nhẹ dao động điều hòa theo phương ngang. Lực kéo về tác dụng vào vật luôn
Một vật tham gia đồng thời hai dao động cùng phương, có phương trình lần lượt là\( {x_1} = 3\cos (10t - \frac{\pi }{3})cm\); \( {x_2} = 4\cos (10t + \frac{\pi }{6})cm\). Vận tốc cực đại của vật là
Một vật nhỏ dao động điều hoà với biên độ A dọc theo trục Ox. Quỹ đạo của vật là một đoạn thẳng có chiều dài:
Một vật dao động điều hòa trên trục Ox. Vận tốc của vật
Một sóng cơ lan truyền trong một môi trường với tốc độ 120cm/s, tần số của sóng thay đổi từ 10Hz đến 15Hz. Hai điểm cách nhau 12,5cm luôn dao động vuông pha. Bước sóng của sóng cơ đó là
Cho hai dao động điều hòa cùng phương có phương trình lần lượt là \( {x_1} = 4\cos (\pi t - \frac{\pi }{6})cm\) và\( {x_1} = 4\cos (\pi t - \frac{\pi }{2})cm\) Li độ dao động tổng hợp của hai dao động này không thể nhận giá trị nào sau đây?
Để phân biệt được sóng ngang và sóng dọc ta dựa vào
Một vật dao động tắt dần có các đại lượng giảm dần theo thời gian là
Con lắc đơn có chiều dài ℓ = 2m, dao động với biên độ góc \( {\alpha _0} = 0,1rad\), biên độ dài của con lắc là