Giả sử viên phấn viết bảng có dạng hình trụ tròn xoay đường kính đáy bằng \(1cm\), chiều dài \(6cm\). Người ta làm những hộp carton đựng phấn dạng hình hộp chữ nhật có kích thước \(6 \times 5 \times 6\). Muốn xếp \(350\) viên phấn vào \(12\) hộp ta được kết quả nào trong các khả năng sau:
A. Thừa \(10\) viên
B. Vừa đủ
C. Không xếp được
D. Thiếu \(10\) viên
Lời giải của giáo viên
Chiều dài viên phấn bằng với chiều dài của hình hộp carton bằng \(6cm\) .
Đường kính đáy của viên phấn hình trụ là \(d = 1cm\) .
Để hộp chứa được nhiều viên phấn nhất ta phải xếp các viên phấn theo chiều thẳng đứng và hợp với đáy hộp có chiều rộng bằng \(5{\rm{ }}cm,\) chiều dài \(6cm\) , chiều cao \(6cm\) .
Diện tích đáy hộp là \(5.6 = 30c{m^2}\) nên 1 hộp carton chứa được nhiều nhất \(5.6 = 30\) viên phấn.
Vậy với \(12\) hộp ta có thể xếp được \(12.30 = 360\) viên phấn.
Suy ra xếp \(350\) viên phấn vào \(12\) hộp thì ta thiếu \(10\) viên.
Chọn D.
CÂU HỎI CÙNG CHỦ ĐỀ
Có tất cả bao nhiêu số dương \(a\) thỏa mãn đẳng thức \({\log _2}a + {\log _3}a + {\log _5}a = {\log _2}a.{\log _3}a.{\log _5}a\)?
Đường cong trong hình vẽ bên là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hỏi hàm số đó là hàm số nào?
Tìm tất cả các giá trị thực của tham số \(m\) để hàm số \(y = \frac{m}{3}{x^3} + 2{x^2} + mx + 1\) có \(2\) điểm cực trị thỏa mãn \({x_{CD}} < {x_{CT}}\).
Xác định tập hợp các điểm \(M\) trong mặt phẳng phức biểu diễn các số phức \(z\) thỏa mãn điều kiện: \(\left| {\overline z + 1 - i} \right| \le 4\).
Trong không gian \(Oxyz\), cho \(A\left( {4; - 2;6} \right),\,\,B\left( {2;4;2} \right)\), \(M \in \left( \alpha \right):\,\,x + 2y - 3z - 7 = 0\) sao cho \(\overrightarrow {MA} .\overrightarrow {MB} \) nhỏ nhất. Tọa độ của \(M\) bằng:
Tìm tất cả các giá trị thực của tham số \(m\) để bất phương trình \({\log _2}\left( {{5^x} - 1} \right).{\log _2}\left( {{{2.5}^x} - 2} \right) \ge m\) có tập nghiệm là \(\left[ {1; + \infty } \right)\)?
Cho 4 điểm \(A\left( {3; - 2; - 2} \right);B\left( {3;2;0} \right);C\left( {0;2;1} \right);D\left( { - 1;1;2} \right)\). Mặt cầu tâm \(A\) và tiếp xúc với mặt phẳng \(\left( {BCD} \right)\) có phương trình là
Một hình lập phương có dện tích mặt chéo bằng \({a^2}\sqrt 2 \). Gọi \(V\) là thể tích khối cầu và \(S\) là diện tích mặt cầu ngoại tiếp hình lập phương nói trên. Khi đó tích \(S.V\) bằng
Diện tích hình phẳng giới hạn bởi \(y = {x^3},y = 4x\) là:
Đường cong trong hình vẽ dưới đây là đồ thị của hàm số nào?
Số nghiệm của phương trình \({\log _2}x.{\log _3}\left( {2x - 1} \right) = 2{\log _2}x\) là:
Số điểm cực trị của hàm số \(y = \left| {\sin x - \dfrac{x}{4}} \right|,\,\,x \in \left( { - \pi ;\pi } \right)\) là:
Trong không gian \(Oxyz\), cho hai đường thẳng \(d:\frac{{x - 1}}{{ - 2}} = \frac{{y + 2}}{1} = \frac{{z - 4}}{3}\) và \(d':\left\{ \begin{array}{l}x = - 1 + t\\y = - t\\z = - 2 + 3t\end{array} \right.\) cắt nhau. Phương trình mặt phẳng chứa \(d\) và \(d'\) là
Trong không gian với hệ tọa độ \(Oxyz\), cho đường thẳng \(\Delta :\frac{{x + 1}}{2} = \frac{y}{3} = \frac{{z + 1}}{{ - 1}}\) và hai điểm \(A\left( {1;2; - 1} \right),B\left( {3; - 1; - 5} \right)\). Gọi \(d\) là đường thẳng đi qua điểm \(A\) và cắt đường thẳng \(\Delta \) sao cho khoảng cách từ \(B\) đến đường thẳng \(d\) là lớn nhất. Khi đó, gọi \(M\left( {a;b;c} \right)\) là giao điểm của \(d\) với đường thẳng \(\Delta \). Giá trị \(P = a + b + c\) bằng
Trong không gian với hệ tọa độ \(Oxyz\), cho hai véc tơ \(\overrightarrow a \left( {2;1;0} \right)\) và \(\overrightarrow b \left( { - 1;m - 2;1} \right)\). Tìm \(m\) để \(\overrightarrow a \bot \overrightarrow b \)