Gọi S là diện tích hình phẳng giới hạn bởi parabol \(\left( P \right),\) tiếp tuyến với \(\left( P \right)\) tại điểm \(A\left( 1;-1 \right)\) và đường thẳng x=2 (như hình vẽ). Tính S.
A. \(S = \frac{4}{3}.\)
B. S = 1
C. \(S = \frac{1}{3}.\)
D. \(S = \frac{2}{3}.\)
Lời giải của giáo viên
Phương trình \(\left( P \right):y=a{{x}^{2}},\) \(\left( P \right)\) qua \(A\left( 1;-1 \right)\Rightarrow a=-1\)
Phương trình tiếp tuyến \(\Delta \) của \(\left( P \right)\) tại A là \(y={f}'\left( 1 \right)\left( x-1 \right)-1=-2\left( x-1 \right)-1=-2x+1\)
Diện tích hình phẳng giới hạn bởi hai đồ thị: \(\left\{ \begin{align} & \left( P \right):y=-{{x}^{2}} \\ & \Delta :y=-2x+1 \\ \end{align} \right.\) là \(S=\int\limits_{1}^{2}{\left( -2x+1+{{x}^{2}} \right)dx}=\frac{1}{3}.\)
CÂU HỎI CÙNG CHỦ ĐỀ
Có bao nhiêu số nguyên dương y để tập nghiệm của bất phương trình \(\left( {{\log }_{2}}x-\sqrt{2} \right)\left( {{\log }_{2}}x-y \right)<0\) chứa tối đa 1000 số nguyên.
Một vật chuyển động với vận tốc \(v\left( t \right)\left( m/s \right)\) có gia tốc \(a\left( t \right)=3{{t}^{2}}+t\left( m/{{s}^{2}} \right)\). Vận tốc ban đầu của vật là \(2\left( m/s \right)\). Hỏi vận tốc của vật sau 2s
Rút gọn biểu thức \(P={{x}^{\frac{1}{5}}}.\sqrt[3]{x}\) với x>0.
Cho hàm số \(y=h\left( x \right)\) có bảng biến thiên như sau:
Hàm số đạt cực đại tại điểm
Họ nguyên hàm của hàm số \(f\left( x \right) = x + \sin 2x\) là.
Tính tích phân \(\int\limits_2^6 {\frac{1}{x}dx} \) bằng.
Một khối trụ có thể tích bằng \(6\pi \). Nếu giữ nguyên chiều cao và tăng bán kính đáy của khối trụ đó gấp 3 lần thì thể tích của khối trụ mới bằng bao nhiêu?
Cho hàm số \(y=f\left( x \right)\) nhận giá trị dương và có đạo hàm \({f}'\left( x \right)\) liên tục trên \(\mathbb{R}\) thỏa mãn \(\int\limits_{0}^{x}{\left[ {{f}^{2}}\left( t \right)+{{\left( {f}'\left( t \right) \right)}^{2}} \right]}dt={{\left( f\left( x \right) \right)}^{2}}-2018\). Tính \(f\left( 1 \right)\)
Cho \(I=\int\limits_{0}^{2}{f(x)d}x=3.\) Khi đó \(J=\int\limits_{0}^{2}{\left[ 4f\left( x \right)-3 \right]dx}\) bằng:
Đồ thị \(\left( C \right)\) của hàm số \(y=\frac{\left( a+1 \right)x+2}{x-b+1}\) nhận gốc tọa độ O làm tâm đối xứng thì tổng a+b là
Cho hàm số y=f(x) có bảng biến thiên như hình sau
Hàm số y=f(x) đồng biến trên khoảng nào dưới đây?