Hình vẽ bên là đồ thị cảu hàm số \(y = f\left( x \right)\) Gọi \(S\) là tập hợp các giá trị nguyên không âm của tham số \(m\) để hàm số \(y = \left| {f\left( {x - 2019} \right) + m - 2} \right|\) có 5 điểm cực trị. Số các phần tử của \(S\) bằng
A. \(3\)
B. \(4\)
C. \(2\)
D. \(5\)
Lời giải của giáo viên
Đồ thị hàm số \(y = f\left( {x - 2019} \right)\) được tạo thành bằng cách tịnh tiến đồ thị hàm số \(y = f\left( x \right)\) theo chiều song song với trục Ox sang bên phải 2019 đơn vị.
Đồ thị hàm số \(y = f\left( {x - 2019} \right) + m - 2\) được tạo thành bằng cách tịnh tiến đồ thị hàm số \(f\left( {x - 2019} \right)\) theo chiều song song với trục Oy lên trên \(m - 2\) đơn vị.
Đồ thị hàm số \(y = \left| {f\left( {x - 2019} \right) + m - 2} \right|\) được tạo thành bằng giữ nguyên phần đồ thị \(y = f\left( {x - 2019} \right) + m - 2\) phía trên trục Ox, lấy đối xứng toàn bộ phần đồ thị phía dưới trục Ox qua trục Ox và xóa đi phần đồ thị phía dưới trục Ox.
Do đó để đồ thị hàm số \(y = \left| {f\left( {x - 2019} \right) + m - 2} \right|\) có 5 điểm cực trị thì đồ thị hàm số \(y = f\left( {x - 2019} \right) + m - 2\) có \({y_{CD}}.{y_{CT}} \le 0\).
\( \Leftrightarrow - 3 + m - 2 \ge 0 > - 6 + m - 2 \Leftrightarrow m - 5 \ge 0 > m - 8 \Leftrightarrow 5 \le m < 8\)
\( \Rightarrow \) có 3 giá trị nguyên của \(m\) thỏa mãn yêu cầu bài toán.
Chọn A.
CÂU HỎI CÙNG CHỦ ĐỀ
Một hình trụ có bán kính đáy bằng \(2cm\) và có thiết diện qua trục là một hình vuông. Diện tích xung quanh của hình trụ là
Cho tam giác đều \(ABC\) có cạnh bằng \(3a\) . Điểm \(H\) thuộc cạnh \(AC\) với \(HC = a.\) Dựng đoạn thẳng \(SH\) vuông góc với mặt phẳng \(\left( {ABC} \right)\) với \(SH = 2a.\) Khoảng cách từ điểm \(C\) đến mặt phẳng \(\left( {SAB} \right)\) bằng
Cho hàm số \(y = f\left( x \right)\) và có bảng biến thiên trên \({\rm{[}} - 5;7)\) như sau:
Mệnh đề nào sau đây đúng?
Cho hai số thực \(x,\,y\) thỏa mãn \({x^2} + {y^2} - 4x + 6y + 4 + \sqrt {{y^2} + 6y + 10} = \sqrt {6 + 4x - {x^2}} \). Gọi \(M,\,m\) lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của biểu thức \(T = \left| {\sqrt {{x^2} + {y^2}} - a} \right|\). Có bao nhiêu giá trị nguyên thuộc đoạn \(\left[ { - 10;\,10} \right]\) của tham số \(a\) để \(M \ge 2m\)?
Tập hợp tất cả các số thực \(x\) không thỏa mãn bất phương trình \({9^{{x^2} - 4}} + \left( {{x^2} - 4} \right){.2019^{x - 2}} \ge 1\) là khoảng \(\left( {a;b} \right)\) . Tính \(b - a\)
Cho hàm số \(y = \dfrac{{mx - 4}}{{x + 1}}\) (với m là tham số thực) có bảng biến thiên dưới đâyMệnh đề nào sau đây đúng?
Cho hàm số \(y = {x^4} - 2{x^2} + m - 2\) có đồ thị \(\left( C \right)\). Gọi \(S\) là tập các giá trị của \(m\) sao cho đồ thị \(\left( C \right)\) có đúng một tiếp tuyến song song với trục \(Ox.\) Tổng tất cả các phần tử của \(S\) là
Gọi \(M\) và \(m\) lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(f\left( x \right) = 2x - 4\sqrt {6 - x} \) trên \(\left[ { - 3;6} \right]\) . Tổng \(M + m\) có giá trị là
Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right)\) trên \(\mathbb{R}\) . Hình vẽ bên là đồ thị của hàm số \(y = f'\left( x \right)\) . Hàm số \(g\left( x \right) = f\left( {x - {x^2}} \right)\) nghịch biến trên khoảng nào trong các khoảng dưới đây ?
Gọi \(S\) là tập hợp các số tự nhiên có ba chữ số (không nhất thiết khác nhau) được lập từ các chữ số \(0;1;2;3;4;5;6;7;8;9\) . Chọn ngẫu nhiên một số \(\overline {abc} \) từ \(S\) . Tính xác suất để số được chọn thỏa mãn \(a \le b \le c.\)
Cho hình chóp đều \(S.ABC\) có đáy là tam giác đều cạnh \(a\) . Gọi \(M,{\rm N}\) lần lượt là trung điểm của \(SB,SC\) . Biết \(\left( {AM{\rm N}} \right) \bot \left( {SBC} \right)\) . Thể tích của khối chóp \(S.ABC\) bằng
Cho hình chóp \(O.\,ABC\) có ba cạnh \(OA,\,OB,\,OC\) đôi một vuông góc và \(OA = OB = OC = a\). Gọi \(M\) là trung điểm cạnh \(AB\). Góc hợp bởi hai véc tơ \(\overrightarrow {BC} \) và \(\overrightarrow {OM} \) bằng
Cho hàm số \(y = \frac{{1 - x}}{{{x^2} - 2mx + 4}}\) . Tìm tất cả các giá trị thực của tham số \(m\) để đồ thị hàm số có ba đường tiệm cận.
Hàm số \(y = - {x^4} - {x^2} + 1\) có mấy điểm cực trị ?