Khẳng định nào dưới đây là khẳng định sai ?
A. Nếu hai mặt phẳng song song cùng cắt mặt phẳng thứ ba thì hai giao tuyến tạo thành song song với nhau
B. Ba mặt phẳng đôi một song song chắn trên hai đường thẳng chéo nhau những đoạn thẳng tương ứng tỉ lệ
C. Nếu mặt phẳng (P) song song với mặt phẳng (Q) thì mọi đường thẳng nằm trên mặt phẳng (P) đều song song với mặt phẳng (Q).
D. Nếu mặt phẳng (P) có chứa hai đường thẳng phân biệt và hai đường thẳng đó cùng song song với mặt phẳng (Q) thì mặt phẳng (P) song song với mặt phẳng (Q).
Lời giải của giáo viên
CÂU HỎI CÙNG CHỦ ĐỀ
Biết đồ thị hàm số \(f\left( x \right) = a\,{x^3} + b{x^2} + cx + d\) cắt trục hoành tại ba điểm phân biệt có hoành độ lần lượt là \({x_1},{x_2},{x_3}.\) Tính giá trị của biểu thức \(T = \frac{1}{{f'\left( {{x_1}} \right)}} + \frac{1}{{f'\left( {{x_2}} \right)}} + \frac{1}{{f'\left( {{x_3}} \right)}}.\)
Cho hàm số \(y = \ln \left( {{x^2} - 3x} \right).\). Tập nghiệm S của phương trình \(f'\left( x \right) = 0\) là
Đạo hàm của hàm số \(f\left( x \right) = \sqrt {\ln \left( {\ln x} \right)} \) trên tập xác định của nó là:
Cho f(x) là một hàm số liên tục trên đoạn \(\left[ { - 1;8} \right]\), biết \(f\left( 1 \right) = f\left( 3 \right) = f\left( 8 \right) = 2\) có bảng biến thiên như sau:
Tìm m để phương trình f(x)=f(m) có ba nghiệm phân biệt thuộc đoạn \(\left[ { - 1;8} \right].\)
Số đường tiệm cận của đồ thị hàm số \(y = \frac{{\sqrt {2018 - {x^2}} }}{{x\left( {x - 2018} \right)}}\) là:
Cho hình hộp ABCD.A'B'C'D' . Trên các cạnh AA', BB'. CC' lần lượt lấy ba điểm M, N, P sao cho \(\frac{{A'M}}{{A\,A'}} = \frac{1}{3};\frac{{B'N}}{{BB'}} = \frac{2}{3};\frac{{C'P}}{{CC'}} = \frac{1}{2}.\) Biết mặt phẳng (MNP) cắt cạnh DD' tại Q. Tính tỉ số \(\frac{{D'Q}}{{D\,D'}}.\)
Trên mặt phẳng Oxy ta xét một hình chữ nhật ABCD với các điểm \(A\left( { - 2;0} \right),B\left( { - 2;2} \right),C\left( {4;2} \right),D\left( {4;0} \right).\) Một con châu chấu nhảy trong hình chữ nhật đó tính cả trên cạnh hình chữ nhật sao cho chân nó luôn đáp xuống mặt phẳng tại các điểm có tọa độ nguyên( tức là điểm có cả hoành độ và tung độ đều nguyên). Tính xác suất để nó đáp xuống các điểm \(M\left( {x;{\rm{ }}y} \right)\) mà \(x + y < 2.\)
Cho tam giác ABC cân tại A. Biết rằng độ dài cạnh BC, trung tuyến AM và độ dài cạnh AB theo thứ tự đó lập thành một cấp số nhân có công bội q. Tìm công bội q của cấp số nhân đó.
Trên mặt phẳng có 2017 đường thẳng song song với nhau và 2018 đường thẳng song song khác cùng cắt nhóm 2017 đường thẳng đó. Đếm số hình bình hành nhiều nhất được tạo thành có đỉnh là các giao điểm nói trên.
Một cấp số cộng có số hạng đầu \(u{ & _1} = 2018\)công sai d=-5. Hỏi bắt đầu từ số hạng nào của cấp số cộng đó thì nó nhận giá trị âm.
Cho hàm số \(y = {x^4} - 4{x^2} + 3.\) Tìm khẳng định sai.
Biết rằng \(\log 7 = a,{\log _5}100 = b.\) Hãy biểu diễn \({\log _{25}}56\) theo a và b.
Cho hàm số y=f(x) có đồ thị như hình vẽ. Xác định tất cả các giá trị thực của tham số m để phương trình \(\left| {f\left( x \right)} \right| = m\) có đúng hai nghiệm thực phân biệt.
Cho hàm số y=f(x) có bảng biến thiên như sau.
Đồ thị hàm số \(y = \left| {f\left( {{\rm{x}} - 2017} \right) + 2018} \right|\) có bao nhiêu điểm cực trị?