Khẳng định nào trong các khẳng định sau là sai?
A. \(\left( {\int {f(x)dx} } \right)' = f(x)\)
B. \(\int {\left[ {f(x) + g(x)} \right]} dx = \int {f(x)dx} + \int {g(x)dx} \) với f(x),g(x) liên tục trên R
C. \(\int {{x^\alpha }dx} = \frac{{{x^{\alpha + 1}}}}{{\alpha + 1}} + C\) với \(\alpha \ne - 1\)
D. \(\int {kf(x)dx} = k\int {f(x)dx} \) với \(k\in \mathbb{R}\)
Lời giải của giáo viên
\(\int {kf(x)dx} = k\int {f(x)dx} \) với \(k\in \mathbb{R}\) là SAI
CÂU HỎI CÙNG CHỦ ĐỀ
Trong không gian Oxyz, cho đường thẳng \(d:\left\{ \begin{array}{l} x = 1\\ y = 2 + 3t\\ z = 5 - t \end{array} \right.(t \in R).\) Vectơ nào dưới đây là vectơ chỉ phương của d?
Tìm tất cả các giá trị thực của tham số m để hàm số \(y=-\frac{{{x}^{3}}}{3}+m{{x}^{2}}+2\) nghịch biến trên \(\mathbb{R}\)
Hàm số nào dưới đây đồng biến trên tập \(\mathbb{R}\) ?
Nếu \({{\left( 7+4\sqrt{3} \right)}^{a-1}}<7-4\sqrt{3}\) thì
Cho hình lăng trụ tam giác đều \(ABC.{A}'{B}'{C}'\) có cạnh đáy bằng a và cạnh bên bằng 2a. Một hình trụ có hai đáy là hai hình tròn ngoại tiếp hai tam giác ABC và \({A}'{B}'{C}'.\) Diện tích xung quanh của hình trụ bằng
Cho hàm số y=f(x) có đạo hàm trên \(\left( a;b \right)\). Phát biểu nào sau đây là đúng ?
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng 2a và cạnh bên bằng 3a. Một hình nón có đỉnh S và đáy là hình tròn ngoại tiếp hình vuông ABCD. Diện tích xung quanh của hình nón bằng
Cho tích phân \(I=\int\limits_{0}^{\pi }{{{x}^{2}}\cos x\text{d}x}\) và \(u={{x}^{2}},\text{d}v=\cos x\,\text{d}x\). Khẳng định nào sau đây đúng ?
Tìm tập xác định D của hàm số \(y={{\log }_{3}}\left( {{x}^{2}}-4x+3 \right)\).
Giá trị của biểu thức \(K = \frac{{{2^3}{{.2}^{ - 1}} + {5^{ - 3}}{{.5}^4}}}{{{{10}^{ - 3}}:{{10}^{ - 2}} - {{(0,25)}^0}}}\) là
Trong không gian Oxyz, cho hai điểm \(A\left( 1;2;1 \right)\) và \(B\left( 4;5;-2 \right).\) Đường thẳng AB cắt mặt phẳng \(\left( P \right):3x-4y+5z+6=0\) tại điểm M. Tính tỉ số \(\frac{BM}{AM}.\)
Trong không gian với hệ tọa độ Oxyz, xét mặt cầu có phương trình \({{x}^{2}}-2ax+{{y}^{2}}-2by+{{\left( z-c \right)}^{2}}=0,\) với a,b,c là các tham số và a,b không đồng thời bằng 0. Mệnh đề nào dưới đây đúng ?
Tính giá trị của biểu thức \(A={{\log }_{a}}\frac{1}{{{a}^{2}}}\) với a>0 và \(a\ne 1\)?
Cho số phức \(z=a+bi(a,b\in \mathbb{R})\) thỏa mãn \(2z-5\bar{z}=-9-14i.\)
Tính S=a+b
Xét các số nguyên dương a,b sao cho phương trình \(b{{\ln }^{2}}x+a\ln x+3=0\) có hai nghiệm phân biệt \({{x}_{1}},{{x}_{2}}\) và phương trình \(3{{\log }^{2}}x+a\log x+b=0\) có hai nghiệm phân biệt \({{x}_{3}},{{x}_{4}}\) thỏa mãn \(\ln {{\left( {{x}_{1}}{{x}_{2}} \right)}^{10}}>\log {{\left( {{x}_{3}}{{x}_{4}} \right)}^{e}}.\) Tính giá trị nhỏ nhất \({{S}_{\min }}\) của S=5a+3b.