Một bình đựng nước dạng hình nón (không có đáy), đựng đầy nước.Người ta thả vào đó một khối cầu có đường kính bằng chiều cao của bình nước và đo được thể tích nước tràn ra ngoài là 18p dm3. Biết rằng khối cầu tiếp xúc với tất cả các đường sinh của hình nón và đúng một nửa của khối cầu chìm trong nước (hình bên). Thể tích V của nước còn lại trong bình bằng
A. \(24\pi\) dm3. .
B. \(6\pi\) dm3
C. \(54\pi\) dm3.
D. \(12\pi\) dm3.
Lời giải của giáo viên
CÂU HỎI CÙNG CHỦ ĐỀ
Hàm số nào trong các hàm số sau đây không là nguyên hàm của hàm số \(y = {x^{2019}}?\)
Cho hàm số \(y=f(x)\) có bảng biến thiên như hình dưới đây.
Tổng số tiệm cận ngang và tiệm cận đứng của đồ thị hàm số \(y = \frac{1}{{2f(x) - 1}}\) là
\(\int {\sin x} dx = f\left( x \right) + C\) khi và chỉ khi
Hàm số \(y = F(x)\) là một nguyên hàm của hàm số \(y = \frac{1}{x}\) trên \(\left( { - \infty ;0} \right)\) thỏa mãn \(F( - 2) = 0.\) Khẳng định nào sau đây là đúng?
Hàm số nào trong các hàm số sau đây là một nguyên hàm của hàm số \(y = {e^{ - 2x}}?\)
Một lớp học gồm có 20 học sinh nam và 15 học sinh nữ. Cần chọn ra 2 học sinh, 1 nam và 1 nữ để phân công trực nhật. Số cách chọn là
Hàm số nào trong các hàm số sau đây có một nguyên hàm bằng \({\cos ^2}x?\)
Trong không gian tọa độ Oxyz cho điểm \(M(a;b;c).\) Tọa độ của véc tơ \(\overrightarrow {MO} \) là
Hàm số \(y = - \frac{{{x^3}}}{3} + {x^2} - mx + 1\) nghịch biến trên khoảng \((0; + \infty )\) khi và chỉ khi
Gọi A là tập hợp tất cả các số có dạng \(\overline {abc} \) với \(a,b,c \in \left\{ {1;2;3;4} \right\}.\) Số phần tử của tập hợp A là
Trong không gian tọa độ Oxyz, cho hình hộp \(ABCD.A'B'C'D'\) có \(A\left( {0;0;0} \right),B\left( {a;0;0} \right),D\left( {0;2a;0} \right),A'\left( {0;0;2a} \right)\) với \(a \ne 0.\) Độ dài đoạn thẳng AC' là
Cho hình chóp S.ABCD có ABCD là hình vuông cạnh \(a\). Tam giác SAB đều và nằm trong mặt phẳng vuông góc với mặt phẳng (ABCD). Khoảng cách giữa hai đường thẳng BC và SD là
Trong không gian tọa độ Oxyz, góc giữa hai véc tơ \(\overrightarrow i \) và \(\overrightarrow u = ( - \sqrt 3 ;0;1)\) là
Một người nhận hợp đồng dài hạn làm việc cho một công ty với mức lương khởi điểm của mỗi tháng trong 3 năm đầu tiên là 6 triệu đồng/tháng. Tính từ ngày đầu tiên làm việc, cứ sau đúng 3 năm liên tiếp thì tăng lương 10% so với mức lương một tháng người đó đang hưởng. Nếu tính theo hợp đồng thì tháng đầu tiên của năm thứ 16 người đó nhận được mức lương là bao nhiêu?