Một con quạ đang khát nước, nó tìm thấy một cái lọ có nước nhưng cổ lọ lại cao không thò mỏ vào uống được. Nó nghĩ ra một cách, nó gắp từng viên bi (hình cầu) bỏ vào trong lọ để nước dâng lên mà tha hồ uống. Hỏi con quạ cần bỏ vào lọ ít nhất bao nhiêu viên để có thể uống nước? Biết rằng mỗi viên bi có bán kính là \(\frac{3}{4}\) (đvđd) và không thấm nước, cái lọ có hình dáng là một khối tròn xoay với đường sinh là một hàm đa thức bậc ba, mực nước bạn đầu trong lọ ở vị trí mà mặt thoáng tạo thành hình tròn có bán kính lớn nhất \(R = 3,\) mực nước quạ có thể uống là vị trí mà hình tròn có bán kính nhỏ nhất r = 1 và khoảng cách giữa 2 mặt này bằng 2, được minh họa như hình vẽ sau:
A. 17
B. 16
C. 15
D. 18
Lời giải của giáo viên
CÂU HỎI CÙNG CHỦ ĐỀ
Họ nguyên hàm của hàm số \(f\left( x \right) = 2\sqrt x + 3{\rm{x}}\) là
Cho hàm số y = f(x) liên tục trên R \ {1;2} và có bảng biến thiên như sau:
Phương trình \(f\left( {{2^{\sin x}}} \right) = 3\) có bao nhiêu nghiệm trên \(\left[ {0;\frac{{5\pi }}{6}} \right]\)
Cho hàm số y =f(x) có bảng biến thiên như sau:
Hàm số y = f(x) đồng biến trên khoảng nào sau đây?
Trong không gian với hệ trục tọa độ Oxyz, cho 3 điểm \(M\left( {1;1;1} \right),{\rm{N}}\left( {1;0;{\rm{ - }}2} \right),{\rm{P}}\left( {0;1;{\rm{ - }}1} \right).\) Gọi \(G\left( {{x_0};{y_0};{z_0}} \right)\) là trực tâm tam giác MNP. Tính \({x_0} + {z_0}\)
Gọi \({x_1},{x_2}\) là hai nghiệm của phương trình \({2^x} = {3^{{x^2}}}\) Tính \({x_1}+{x_2}\)
Trong không gian với hệ trục tọa độ Oxyz, cho 2 điểm \(A\left( {2;1;0} \right),{\rm{B}}\left( {1;{\rm{ - }}1;3} \right).\) Mặt phẳng qua AB và vuông góc với mặt phẳng \(\left( P \right):x + 3y - 2{\rm{z}} - 1 = 0\) có phương trình là
Cho hàm số y = f(x) liên tục trên R và là hàm số chẵn, biết \(\int\limits_{ - 1}^1 {\frac{{f\left( x \right)}}{{1 + {e^x}}}} d{\rm{x}} = 1.\) Tính \(\int\limits_{ - 1}^1 {f\left( x \right)} d{\rm{x}}\)
Cho hàm số y = f(x) có bảng biến thiên như sau
Hàm số y = f(x)đạt cực đại tại
Cho hình hộp ABCD.A’B’C’D’ có đáy ABCD là hình thoi tâm O, cạnh bằng \(a,{\rm{ }}B{\rm{'}}D' = a\sqrt 3 .\) Góc giữa CC’ và mặt đáy là \(60^o\) trung điểm H của AO là hình chiếu vuông góc của A’ lên mặt phẳng ABCD. Tính thể tích của hình hộp
Có bao nhiêu giá trị nguyên của tham số m để phương trình \(\sin 2x + cos2x + \left| {\sin x + cosx} \right| - \sqrt {co{s^2}x + m} - m = 0\) có nghiệm thực?
Cho \(P\left( x \right) = {\left( {1 + 3{\rm{x}} + {x^2}} \right)^{20}}.\) Khai triển P(x) thành đa thức ta được \(P\left( x \right) = {a_0} + {a_1}x + {a_2}{x^2} + ... + {a_{40}}{x^{40}}.\) Tính \(S = {a_1} + 2{a_2} + ... + 40{a_{40}}\)
Trong không gian với hệ trục tọa độ Oxyz, cho 2 đường thẳng \({d_1}:\frac{{x - 2}}{1} = \frac{{y - 2}}{1} = \frac{{z + 1}}{{ - 1}};{d_2}:\frac{{x - 1}}{{ - 1}} = \frac{y}{{ - 1}} = \frac{z}{2}.\) Viết phương trình đường phân giác góc nhọn tạo bởi \({d_1},{d_2}\)
Cho hình chóp S.ABCD đáy là hình thang cân có \(AB{\rm{ }} = {\rm{ }}CD{\rm{ }} = {\rm{ }}BC{\rm{ }} = {\rm{ }}a,{\rm{ }}AD{\rm{ }} = {\rm{ }}2a.\) Cạnh bên SA vuông góc với mặt đáy, SA = 2a. Tính thể tích khối cầu ngoại tiếp hình chóp S.BCD.
Gọi S là tập hợp tất cả các giá trị của tham số m sao cho GTNN của hàm số \(y = \left| {{{\sin }^4}x + \cos 2x + m} \right|\) bằng 2. Số phần tử của S là
Cho ba số thực x, y, z thỏa mãn \(x + y - z = 2.\) Biết giá trị nhỏ nhất của biểu thức \(A = \sqrt {{x^2} + {y^2} + {z^2} - 2x - 2y - 2z + 3} + \sqrt {{x^2} + {y^2} + {z^2} - 4x - 2y + 5} \) đạt tại \(\left( {{x_0};{y_0};{z_0}} \right)\). Tính \({x_0} + {y_0}\)