Một cửa hàng bán bưởi Đoan Hùng của Phú Thọ với giá bán mỗi quả là 50.000 đồng. Với giá này thì cửa hàng chỉ bán được khoảng 40 quả bưởi. Cửa hàng này dự định giảm giá bán, ước tính nếu cửa hàng cứ giảm mỗi quả 5000 đồng thì số bưởi bán được tăng thêm 50 quả. Xác định giá bán để cửa hàng đó thu được lợi nhuận lớn nhất, biết rằng giá nhập về ban đầu mỗi quả là 30.000 đồng.
A. 44.000 đ
B. 41.000
C. 43.000
D. 42.000
Lời giải của giáo viên
Gọi \(x\) đồng \(\left( 30<x<50 \right)\) là giá bán bưởi mới để cửa hàng thu được lợi nhuận lớn nhất.
Suy ra giá bán ra đã giảm là \(50-x\) đồng.
Số lượng bưởi bán ra đã tăng thêm là \(\frac{50\left( 50-x \right)}{5}=500-10x.\)
Tổng số bưởi bán được là \(40+500-10x=540-10x.\)
Doanh thu của cửa hàng là \(\left( 540-10x \right)x.\)
Số tiền vốn ban đầu để mua bưởi là \(\left( 540-10x \right)30.\)
Vậy lợi nhuận của cửa hàng là \(\left( 540-10x \right)x-\left( 540-10x \right)30=-10{{x}^{2}}+840x-16200.\)
Ta có: \(f\left( x \right)=-10{{x}^{2}}+840x-16200=-10{{\left( x-42 \right)}^{2}}+1440\le 1440.\)
Suy ra \(\max f\left( x \right)=1440\) khi \(x=42.\)
Vậy giá bán mỗi quả là 42.000 đồng thì cửa hàng thu được lợi nhuận lớn nhất.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(y=f\left( x \right)\) liên tục trên \(\mathbb{R}\) có đồ thị như hình vẽ.
Có bao nhiêu giá trị nguyên của tham số \(m\) để phương trình \(f\left( \sqrt{4+2f\left( \cos x \right)} \right)=m\) có nghiệm \(x\in \left[ 0;\frac{\pi }{2} \right).\)
Cho hàm số \(y={{x}^{3}}-3{{x}^{2}}+mx-1\) với \(m\) là tham số thực. Tìm tất cả các giá trị của tham số \(m\) để hàm số đạt cực trị tại hai điểm \({{x}_{1}};{{x}_{2}}\) thỏa mãn \(x_{1}^{2}+x_{2}^{2}=6.\)
Phương trình \(\log _{2}^{2}x={{\log }_{2}}\frac{{{x}^{4}}}{2}\) có nghiệm là \(a,b.\) Khi đó \(a.b\) bằng
Có bao nhiêu giá trị nguyên dương của \(m\) để hàm số \(y=\frac{x-8}{x-m}\) đồng biến trên từng khoảng xác định của nó?
Tổng các nghiệm của phương trình \(\log _{2}^{2}\left( 3x \right)+{{\log }_{3}}\left( 9x \right)-7=0\) bằng
Tìm hoành độ các giao điểm của đường thẳng \(y=2x-\frac{13}{4}\) với đồ thị hàm số \(y=\frac{{{x}^{2}}-1}{x+2}.\)
Cho hàm số \(y=\frac{x-\sqrt{{{x}^{2}}+2x}}{{{x}^{2}}+mx-m-3}\) có đồ thị \(\left( C \right)\). Giá trị của \(m\) để \(\left( C \right)\) có đúng hai tiệm cận thuộc tập nào sau đây?
Cho hình lăng trụ đứng \(ABC.A'B'C'\) có đáy \(ABC\) vuông tại \(A,AB=a\sqrt{3},AC=AA'=a.\) Sin góc giữa đường thẳng \(AC'\) và mặt phẳng \(\left( BCC'B' \right)\) bằng
Tập xác định của hàm số \(y={{\log }_{12}}\left( {{x}^{2}}-5x-6 \right)\)
Cho hàm số \(y=f\left( x \right)\) có đồ thị như hình vẽ. Hàm số \(y=f\left( x \right)\) đồng biến trên khoảng nào dưới đây ?
Phương trình \({{2}^{{{x}^{2}}+x-3}}=8\) có hai nghiệm là \(a,b.\) Khi đó \(a+b\) bằng
Khoảng nghịch biến của hàm số \(y={{x}^{3}}-3x+3\) là \(\left( a;b \right)\) thì \(P={{a}^{2}}-2ab\) bằng