Một hộp đựng 3 viên bi màu xanh, 5 viên bi màu đỏ, 6 viên bi màu trắng và 7 viên bi màu đen. Chọn ngẫu nhiên đồng thời từ hộp 4 viên bi, tính xác suất để 4 viên bi được chọn không nhiều hơn 3 màu và luôn có bi màu xanh?
A. \(\frac{2295}{5985}\).
B. \(\frac{2259}{5985}\).
C. \(\frac{2085}{5985}\).
D. \(\frac{2058}{5985}\).
Lời giải của giáo viên
Gọi \(A\) là biến cố để 4 viên bi được chọn không nhiều hơn 3 màu và luôn có bi màu xanh.
Gọi \(\overline{A}\) là biến cố để 4 viên bi được chọn có đủ 4 màu hoặc không có bi màu xanh.
Số phần tử không gian mẫu: \(n\left( \Omega \right)=C_{21}^{4}=5985.\)
Trường hợp 1: 4 bi được chọn có đủ 4 màu: có \(3.5.6.7=630\) cách chọn.
Số phần tử biến cố \(\overline{A}:n\left( \overline{A} \right)=630+3060=3690.\)
Số phần tử biến cố \(A:n\left( A \right)=n\left( \Omega \right)-n\left( \overline{A} \right)=5985-3690=2295.\)
Xác suất của biến cố \(A:P\left( A \right)=\frac{n\left( A \right)}{n\left( \Omega \right)}=\frac{2295}{5985}.\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(y=f(x)\) có bảng biến thiên như sau
Hàm số đã cho đồng biến trên khoảng nào dưới đây
Cho hàm số \(y=\frac{x+m}{x-1}\) có đồ thị là đường cong \(\left( H \right)\) và đường thẳng \(\Delta \) có phương trình \(y=x+1\). Số giá trị nguyên của tham số \(m\) nhỏ hơn 10 để đường thẳng \(\Delta \) cắt đường cong \(\left( H \right)\) tại hai điểm phân biệt nằm về hai nhánh của đồ thị.
Tỷ lệ tăng dân số hàng năm của Việt Nam là 1,07%. Năm 2016, dân số của Việt Nam là 93.422.000 người. Hỏi với tỷ lệ tăng dân số như vậy thì năm 2026 dân số Việt Nam gần với kết quả nào nhất?
Một hình chóp có đáy là tam giác đều cạnh bằng \(2\) và có chiều cao bằng \(4.\) Tính thể tích khối chóp đó.
Cho hàm số \(y=f(x)\) liên tục trên \(\mathbb{R}\) và có bảng biến thiên
Tìm \(m\) để phương trình \(2f(x)+m=0\) có đúng \(3\) nghiệm phân biệt
Cho hình chóp \(S.ABCD\) có \(SA\bot \left( ABCD \right)\), đáy \(ABCD\) là hình chữ nhật với\(AC=a\sqrt{3}\)và \(BC=a\). Tính khoảng cách giữa \(SD\) và \(BC\).
Cho tứ diện \(OABC\) có \(OA\), \(OB\), \(OC\) đôi một vuông góc nhau và \(OA=OB\)\(=OC=3a\). Tính khoảng cách giữa hai đường thẳng \(AC\) và \(OB\).
Giá trị lớn nhất của hàm số \(f(x)=2{{x}^{4}}-3{{x}^{2}}+1\) trên đoạn \(\left[ 0;3 \right]\) bằng:
Cho hình chóp \(S.ABCD\) có đáy là hình vuông cạnh \(a\), \(SA\bot \left( ABCD \right)\), \(SB=a\sqrt{3}\). Tính thể tích \(V\) của khối chóp \(S.ABCD\) theo \(a\).
Cho hàm số \(y=f(x)\) có bảng biến thiên như sau
Hàm số đã cho đạt cực đại tại
Cho hình chóp \(S.ABC\) có \(\Delta ABC\) vuông tại \(B\), \(BA=a\), \(BC=a\sqrt{3}\). Cạnh bên \(SA\) vuông góc với đáy và \(SA=a\). Tính bán kính của mặt cầu ngoại tiếp hình chóp \(S.ABC\).
Cho hàm số \(f(x)\) liên tục trên \(\left[ 2;4 \right]\) và có bảng biến thiên như hình vẽ bên
Có bao nhiêu giá trị nguyên của \(m\) để phương trình \(x+2\sqrt{{{x}^{2}}-2x}=m.f(x)\) có nghiệm thuộc đoạn \(\left[ 2;4 \right]\) ?
Cho hàm số \(y=f\left( x \right)\) xác định và liên tục trên \(\mathbb{R}\) , có bảng biến thiên như sau. Hỏi đồ thị hàm số \(y=\frac{1}{f\left( x \right)+2}\) có tất cả bao nhiêu đường tiệm cận?
Cho hình chóp \(S.\,ABCD\) có đáy là hình vuông cạnh \(a\), mặt bên \(SAB\) là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Thể tích khối chóp \(S.\,ABCD\) là