Một miếng giấy hình chữ nhật ABCD với \(AB = x,\,\,BC = 2x\) và đường thẳng \(\Delta\) nằm trong mặt phẳng (ABCD), \(\Delta\) song song với AD và cách AD một khoảng bằng a, \(\Delta\) không có điểm chung với hình chữ nhật ABCD và khoảng cách từ A đến B đến \(\Delta\). Tìm thể tích lớn nhất có thể có của khi quay hình chữ nhật ABCD quanh \(\Delta\)
A. \(\frac{{64\pi {a^3}}}{{27}}.\)
B. \(64\pi {a^3}.\)
C. \(\frac{{63\pi {a^3}}}{{27}}.\)
D. \(\frac{{64\pi }}{{27}}.\)
Lời giải của giáo viên
CÂU HỎI CÙNG CHỦ ĐỀ
Gọi A, B là hai điểm trong mặt phẳng phức theo thứ tự biểu diễn các số phức \({z_1},{z_2}\) khác 0 thỏa mãn đẳng thức \(z_1^2 + z_2^2 - {z_1}{z_2} = 0,\) khi đó tam giác OAB (O là gốc tọa độ)
Trên tập C, cho số phức \(z = \frac{{i + m}}{{i - 1}},\) với m là tham số thực khác -1. Tìm tất cả các giá trị của tham số m để \(z.\overline z = 5.\)
Cho hàm số f(x) liên tục trên \(\left[ {0;10} \right]\) thỏa mãn \(\int\limits_0^{10} {f\left( x \right)dx = 7,} \,\int\limits_2^6 {f\left( x \right)} dx = 3.\) Tính \(P = \int\limits_0^2 {f\left( x \right)dx + \int\limits_6^{10} {f\left( x \right)dx.} } \)
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng \((P):2x - 2y + z - 5 = 0.\) Viết phương trình mặt phẳng (Q) song song với mặt phẳng (P), cách (P) một khoảng bằng 3 và cắt trục Ox tại điểm có hoành độ dương.
Đồ thị hàm số \(y = {\rm{a}}{{\rm{x}}^4} + b{x^2} + c\) đạt cực đại tại \(A\left( {0; - 2} \right)\) và cực tiểu tại \(B\left( {\frac{1}{2}; - \frac{{17}}{8}} \right).\) Tính a + b + c
Với các số thực dương a, b bất kì, \(a\ne1\) Mệnh đề nào dưới đây đúng ?
Cho hình chóp S.ABCD có đáy ABCD là vuông cạnh 2a, mặt bên SAB là tam giác cân nằm trong mặt phẳng vuông góc với đáy, \(\angle {\rm{AS}}B = 120^\circ .\) Tính bán kính mặt cầu (S) ngoại tiếp hình chóp.
Phương trình mặt phẳng đi qua \(A\left( {1;2;3} \right)\) và nhận \(\overrightarrow n = \left( {2;3;4} \right)\) làm vectơ pháp tuyến là:
Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng \({d_1}:\left\{ \begin{array}{l} x = 2t\\ y = t\\ z = 4 \end{array} \right.\) và \({d_2}:\left\{ \begin{array}{l} x = 3 - t'\\ y = t'\\ z = 0 \end{array} \right.\). Viết phương trình mặt cầu (S) có bán kính nhỏ nhất tiếp xúc với cả hai đường thẳng \(d_1\) và \(d_2\)
Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l} \frac{{3 - {x^2}}}{2}\,\,khi\,x < 1\\ \frac{1}{x}\,\,\,\,\,\,\,\,\,\,\,khi\,x < 1 \end{array} \right.\,\,.\) Khẳng định nào dưới đây là sai?
Trong không gian Oxyz, cho mặt phẳng (P) có phương trình \(x - 2y + 2z - 5 = 0.\) Xét mặt phẳng \(\left( Q \right):x + \left( {2m - 1} \right)z + 7 = 0,\) với m là tham số thực. Tìm tất cả các giá trị của m để mặt phẳng (P) tạo với (Q) một góc \(\frac{\pi }{4}.\)
Tìm hệ số chứa \(x^9\) trong khai triển của \(P\left( x \right) = {\left( {1 + x} \right)^9} + {\left( {1 + x} \right)^{10}}.\)
Cho hàm số \(f\left( x \right) = \frac{{{x^3}}}{3} + \frac{{{x^2}}}{2} + x.\) Tập nghiệm của bất phương trình \(f'\left( x \right) \le 0\) bằng:
Cho số phức z thỏa mãn \(\left| {\frac{z}{{i + 2}}} \right| = 1.\) Biết rằng tập các điểm biễu diễn số phức z là một đường tròn (C) Tính bán kính r của đường tròn (C)
Tìm số phức z thỏa mãn \(\overline z = \frac{1}{3}\left[ {{{\left( {\overline {1 - 2i} } \right)}^2} - z} \right].\)