Một mô hình gồm các khối cầu xếp chồng lên nhau tạo thành một cột thẳng đứng. Biết rằng mỗi khối cầu có bán kính gấp đôi bán kính của khối cầu nằm ngay trên nó và bán kính khối cầu dưới cùng là 50cm. Hỏi mệnh đề nào sau đây là đúng?
A. Mô hình có thể đạt được chiều cao tùy ý.
B. Chiều cao mô hình không quá 1,5 mét.
C. Chiều cao mô hình tối đa là 2 mét.
D. Chiều cao mô hình dưới 2 mét.
Lời giải của giáo viên
Gọi các quả cầu được xếp trong mô hình là n quả. \(\left( {n \in {N^*}} \right)\)
\( \Rightarrow \) Bán kính các quả cầu tạo thành cấp số nhân có công bội là 2.
Gọi bán kính quả cầu trên cùng hay quả cầu nhỏ nhất là \({R_1}.\,\,\,\left( {0 < {R_1} < 50} \right)\)
\( \Rightarrow \) Bán kính quả cầu dưới cùng là: \({R_n} = 50cm = {R_1}{.2^{n - 1}} \Leftrightarrow {2^n} = \frac{{100}}{{{R_1}}}\)
Khi đó chiều cao của mô hình có thể là: \(h = 2{S_n} = \frac{{2.{R_1}\left( {{2^n} - 1} \right)}}{{2 - 1}} = 2{R_1}\left( {\frac{{100}}{{{R_1}}} - 1} \right) = 200 - 2{R_1} < 200cm = 2m\)
Vậy chiều cao của mô hình là dưới 2 mét.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho khối chóp tứ giác SABCD có thể tích V, đáy ABCD là hình bình hành. Gọi M, N, P, Q lần lượt là trung điểm các cạnh SB, BC, CD, DA. Tính thể tích khối chóp M.CNQP theo V.
Cho hình chóp tứ giác SABCD có đáy ABCD là hình vuông cạnh a, mặt bên SAB là một tam giác đều và nằm trong một mặt phẳng vuông góc với đáy (ABCD). Tính thể tích khối chóp SABCD.
Cho một đa giác đều có 48 đỉnh. Lấy ngẫu nhiên ba đỉnh của đa giác. Tính xác suất để tam giác tạo thành từ ba đỉnh đó là một tam giác nhọn.
Cho hai số thực \(a>1, b>1\). Gọi \(x_1, x_2\) là hai nghiệm của phương trình \({a^x}{b^{{x^2} - 1}} = 1\). Trong trường hợp biểu thức \(S = {\left( {\frac{{{x_1}{x_2}}}{{{x_1} + {x_2}}}} \right)^2} - 4{x_1} - 4{x_2}\) đạt giá trị nhỏ nhất, mệnh đề nào sau đây là đúng?
Phương trình \(\cos 2x + 2\cos x - 3 = 0\) có bao nhiêu nghiệm trong khoảng \(\left( {0;2019} \right)\)?
Tập nghiệm của bất phương trình \(\frac{{\log \left( {{x^2} - 9} \right)}}{{\log \left( {3 - x} \right)}} \le 1\) là:
Trong không gian với hệ tọa độ Oxyz, gọi \(\left( \alpha \right)\) là mặt phẳng chứa đường thẳng \(d:\frac{{x - 2}}{1} = \frac{{y - 3}}{1} = \frac{z}{2}\) và vuông góc với mặt phẳng \(\left( \beta \right):x + y - 2z + 1 = 0\). Hỏi giao tuyến của \(\left( \alpha \right)\) và \(\left( \beta \right)\) là:
Trong không gian với hệ tọa độ Oxyz cho hai điểm \(A\left( {0;0;3} \right),\,\,B\left( { - 2;0;1} \right)\) và mặt phẳng
\(\left( \alpha \right):2x - y + 2z + 8 = 0\). Hỏi có bao nhiêu điểm C trên mặt phẳng \(\left( \alpha \right)\) sao cho tam giác ABC đều.
Cho hàm số \(y = \dfrac{{2x - 2}}{{x + 1}}\) có đồ thị \(\left( C \right)\). Giá trị dương của tham số \(m\) để đường thẳng \(\left( d \right):y = 2x + m\) cắt \(\left( C \right)\) tại 2 điểm phân biệt \(A,B\) sao cho \(AB = \sqrt 5 \) thuộc khoảng nào sau đây?
Cho hai số thực thỏa mãn \({x^2} + {y^2} = 1\). Đặt \(P = \frac{{{x^2} + 6xy}}{{1 + 2xy + 2{y^2}}}\). Khẳng định nào sau đây là đúng?
Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y = \frac{{x + m}}{{x + 1}}\) trên đoạn [1;2] bằng 8 (m là tham số thực). Khẳng định nào sau đây là đúng?
Cho một cấp số cộng \((u_n)\) có \(u_1=5\) và tổng 40 số hạng đầu bằng 3320. Tìm công sai của cấp số cộng đó.
Trong không gian với hệ tọa độ cho điểm A(- 3;1;2). Tọa độ điểm A' đối xứng với điểm A qua trục Oy là:
Biết rằng trong không gian với hệ tọa độ Oxyz có hai mặt phẳng (P) và (Q) cùng thỏa mãn các điều kiện sau: đi qua hai điểm A(1;1;1) và B(0;- 2;2), đồng thời cắt các trục tọa độ Ox, Oy tại hai điểm cách đều O. Giả sử (P) có phương trình \(x + {b_1}y + {c_1}z + {d_1} = 0\) và (Q) có phương trình \(x + {b_2}y + {c_2}z + {d_2} = 0\). Tính giá trị của biểu thức \({b_1}{b_2} + {c_1}{c_2}\)
Cho phương trình \(\frac{{\cos 4x - \cos 2x + 2{{\sin }^2}x}}{{\sin x + \cos x}} = 0\). Tính diện tích đa giác có các đỉnh là các điểm biểu diễn các nghiệm của phương trình trên đường tròn lượng giác.