Một người gởi 75 triệu đồng vào ngân hàng theo thể thức lãi kép kì hạn 1 năm với lãi suất 5,4% một năm. Giả sử lãi suất không thay đổi, hỏi 6 năm sau người đó nhận về số tiền là bao nhiêu kể cả gốc và lãi? (đơn vị đồng, làm tròn đến hàng nghìn)
A. 97.860.000
B. 150.260.000
C. 102.826.000
D. 120.826.000
Lời giải của giáo viên
Số tiền người đó nhận về sau 6 năm là: \(75000000 \times {\left( {1 + \frac{{5,4}}{{100}}} \right)^6} \approx 102826000\).
CÂU HỎI CÙNG CHỦ ĐỀ
Chọn ngẫu nhiên một số tự nhiên A có bốn chữ số. Gọi N là số thỏa mãn \(3^N=A\). Xác suất để N là số tự nhiên bằng:
Gọi \(x, y\) là các số thực dương thỏa mãn điều kiện \({\log _9}x = {\log _6}y = {\log _4}\left( {x + y} \right)\) và \(\frac{x}{y} = \frac{{ - a + \sqrt b }}{2}\), với \(a, b\) là hai số nguyên dương. Tính \(a+b\).
Cho \(f\left( x \right) = {2.3^{{{\log }_{81}}x}} + 3\). Tính \(f'(1)\).
Tập nghiệm của bất phương trình \({\log _2}\left( {{x^2} - 3x + 1} \right) \le 0\) là
Gọi \(a\) là một nghiệm của phương trình \({\left( {26 + 15\sqrt 3 } \right)^x} + 2{\left( {7 + 4\sqrt 3 } \right)^x} - 2{\left( {2 - \sqrt 3 } \right)^x} = 1\). Khi đó giá trị của biểu thức nào sau đây là đúng?
Tính giá trị của biểu thức \(P = \log \left( {\tan 1^\circ } \right) + \log \left( {\tan 2^\circ } \right) + \log \left( {\tan 3^\circ } \right) + ... + \log \left( {\tan 89^\circ } \right)\).
Cho hàm số \(y=a^x\) với \(0 < a \ne 1\) có đồ thị (C). Chọn khẳng định sai?
Cho \(n\) là số nguyên dương và \(a > 0,a \ne 1\). Tìm \(n\) sao cho \({\log _a}2019 + {\log _{\sqrt a }}2019 + {\log _{\sqrt[3]{a}}}2019 + ... + {\log _{\sqrt[n]{a}}}2019 = 2033136.{\log _a}2019\)
Biết \({\log _a}b = 2\). Giá trị của \({\log _{{a^2}b}}\frac{{{a^4}}}{{b\sqrt b }}\) bằng
Cho \(a, b, c >1\). Biết rằng biểu thức \(P = lo{g_a}\left( {bc} \right) + lo{g_b}\left( {ac} \right) + 4lo{g_c}\left( {ab} \right)\) đạt giá trị nhất \(m\) khi \(lo{g_b}c = n\). Tính giá trị \(m+n\).
Số các giá trị nguyên của tham số \(m\) để phương trình \({\log _{\sqrt 2 }}\left( {x - 1} \right) = {\log _2}\left( {mx - 8} \right)\) có hai nghiệm phân biệt là:
Cho hàm số \(y=f(x)\) xác định và liên tục trên đoạn \(\left[ {0;\frac{7}{2}} \right]\), có đồ thị của hàm số \(y=f'(x)\) như hình vẽ. Hỏi hàm số \(y=f(x)\) đạt giá trị nhỏ nhất trên đoạn \(\left[ {0;\frac{7}{2}} \right]\) tại điểm \(x_0\) nào dưới đây?
Cho phương trình \({\log _5}\left( {{5^x} - 1} \right).{\log _{25}}\left( {{5^{x + 1}} - 5} \right) = 1\). Khi đặt \(t = {\log _5}\left( {{5^x} - 1} \right)\), ta được phương trình nào dưới đây?
Đặt \(a = {\log _2}3,b = {\log _2}5,c = {\log _2}7\). Biểu thức biểu diễn \({\log _{60}}1050\) theo \(a, b, c\) là.
Cho \(a = {\log _2}5,b = {\log _3}5\). Tính \({\log _{24}}600\) theo \(a, b\).