Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0,4%/tháng. Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được vào vốn ban đầu để tính lãi cho tháng tiếp theo. Hỏi sau 6 tháng, người đó được lĩnh số tiền (cả vốn ban đầu và lãi) gần nhất với số tiền nào dưới đây, nếu trong khoảng thời gian này người đó không rút tiền ra và lãi suất không thay đổi ?
A. 102.424.000 đồng.
B. 102.423.000 đồng.
C. 102.016.000 đồng.
D. 102.017.000 đồng.
Lời giải của giáo viên
Theo giả thiết A = 100.000.000, lãi kép r = 0,4%/tháng, n = 6 tháng.
Sau 6 tháng, người đó được lĩnh số tiền (cả vốn ban đầu và lãi) là
\(S = A{\left( {1 + r} \right)^n} \Rightarrow S = 100.000.000{\left( {1 + 0,4\% } \right)^6} \approx 102.424.000\) đồng
CÂU HỎI CÙNG CHỦ ĐỀ
Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y = - {x^3} + 2{x^2} - x + 2\) trên đoạn \(\left[ { - 1;\frac{1}{2}} \right]\). Khi đó tích M.m bằng
Tính diện tích xung quanh của khối trụ có bán kính đáy r = 2 và độ dài đường sinh \(l = 2\sqrt 5 .\)
Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) đi qua điểm A(1;2;0) và chứa đường thẳng \(d:\frac{{x + 1}}{2} = \frac{y}{3} = \frac{z}{1}\) và có một véc-tơ pháp tuyến là \(\overrightarrow n = \left( {1;a;b} \right).\) Tính a+b.
Khi cắt khối trụ (T) bởi một mặt phẳng song song với trục và cách trục của trụ (T) một khoảng bằng \(a\sqrt 3 \) ta được thiết diện là hình vuông có diện tích bằng 4a2. Tính thể tích V của khối trụ (T).
Cho hàm số y = f(x) có bảng biến thiên như hình vẽ:
Tìm tất cả các giá trị của m để phương trình f(x) = m có 3 nghiệm phân biệt.
Cho tích phân \(I = \int\limits_0^4 {x\sqrt {{x^2} + 9} dx} \). Khi đặt \(t = \sqrt {{x^2} + 9} \) thì tích phân đã cho trở thành
Cho mặt phẳng \(\left( \alpha \right):3x - 2y - z + 5 = 0\) và đường thẳng \(\Delta :\frac{{x - 1}}{2} = \frac{{y - 7}}{2} = \frac{{z - 3}}{4}\). Gọi \((\beta)\) là mặt phẳng chứa \(\Delta\) và song song với \((\alpha)\). Khoảng cách giữa \((\alpha)\) và \((\beta)\) là
Cho hàm số f(x) liên tục trên đoạn [0;5]. Nếu \(\int\limits_0^5 {f\left( x \right)dx = 1} \) thì \(\int\limits_0^5 {\left[ {3{x^2} - 2f\left( x \right)} \right]dx} \) có giá trị bằng
Giá trị của biểu thức \({\log _2}5.{\log _5}64\) bằng
Đồ thị như hình vẽ là đồ thị của hàm số nào dưới đây?
Cho hàm số y = f(x) có bảng biến thiên như hình vẽ. Hỏi hàm số y = f(x) có bao nhiêu điểm cực trị?
Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = x3, trục hoành và hai đường thẳng x = -1; x = 2 biết rằng mỗi đơn vị dài trên các trục tọa độ là 2 cm.
Số giao điểm của đồ thị hàm số \(y = \frac{{2x + 1}}{{x - 1}}\) với đường thẳng y = 2x + 3 là
Tiệm cận ngang của đồ thị hàm số \(y = \frac{5}{{x - 1}}\) là đường thẳng có phương trình nào dưới đây?