Lời giải của giáo viên
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hình chóp đều S.ABCD có tam giác SAC đều cạnh a. Thể tích của khối chóp S.ABCD là
Trong không gian tọa độ Oxyz, cho \(A\left( {2;0;1} \right),B\left( {0;5; - 1} \right).\) Tích vô hướng của hai véc tơ \(\overrightarrow {OA} \) và \(\overrightarrow {OB} \) bằng
Cho hình nón có góc ở đỉnh bằng 800. Góc giữa đường thẳng chứa một đường sinh và mặt phẳng chứa đường tròn đáy bằng
Trong không gian tọa độ Oxyz, phương trình mặt cầu tâm \(I(2;-3;-4)\) bán kính 4 là
Cho hàm số \(y = f\left( x \right)\) có đạo hàm trên R và có bảng biến thiên như hình bên. Khẳng định nào sau đây là đúng?
Cho hàm số \(y = f\left( x \right)\) liên tục trên R và có đồ thị như hình bên. Số đường tiệm cận đứng của đồ thị hàm số \(y = \frac{1}{{f\left( x \right) + 1}}\) là
Cho hàm số \(y=cos 4x\) có một nguyên hàm là \(F(x)\). Khẳng định nào sau đây là đúng?
Số nghiệm âm của phương trình \(\log \left| {{x^2} - 3} \right| = 0\) là
Hàm số nào trong các hàm số sau đây có đồ thị phù hợp với hình bên?
Tất cả các học sinh của lớp 10A1 đều học giỏi ít nhất một trong hai môn Toán hoặc Tiếng Anh. Lớp có đúng 30 bạn giỏi Toán, 25 bạn giỏi Tiếng Anh, 16 bạn giỏi cả hai môn Toán và Tiếng Anh. Số học sinh của lớp 10A1 là
Nền nhà tầng 1 của một hội trường có độ cao 0,8 mét so với mặt đất. Từ nền nhà tầng 1 lên nền nhà tầng 2 có 1 cầu thang 19 bậc, độ cao của các bậc (so với mặt đất) theo thứ tự lập thành một cấp số cộng \(\left( {2; + \infty } \right)\) có 19 số hạng, \({u_1} = 0,95;d = 0,15\) (đơn vị là m). Độ cao của bậc thứ 8 so với mặt đất là
Xét các khẳng định sau:
i) Nếu \(a>2019\) thì \({a^x} > {2019^x}_{}^{}\forall x \in R\)
ii) Nếu \(a>2019\) thì \({b^a} > {b^{2019}},\forall b > 0\)
iii) Nếu \(a>2019\) thì \({\log _b}a > {\log _b}2019_{}^{}\forall b > 0,b \ne 1\)
Số khẳng định đúng trong các khẳng định trên là
Cho hình chóp S.ABCD có đáy là hình chữ nhật, SA vuông góc với mặt phẳng (ABCD). Gọi H, K lần lượt là hình chiếu vuông góc của A lên các đường thẳng SB và SD. Biết \(\widehat {HAK} = {40^0}\). Góc giữa hai mặt phẳng (SBC) và (SCD) bằng
Trong không gian tọa độ Oxyz, cho hai điểm A(1; 2; 2), B(2; 2; 1). Tập hợp các điểm M thỏa mãn \(\left( {\overrightarrow {OM} ,\overrightarrow {OA} } \right) = \left( {\overrightarrow {OM} ,\overrightarrow {OB} } \right)\) là một mặt phẳng có phương trình