Lời giải của giáo viên
Ta có công thức lãi kép \(S=A{{\left( 1+r \right)}^{n}}\) với S là số tiền thu được sau n năm, A là số tiền gửi ban đầu và r là lãi suất.
Theo bài ra ta có \(2A = A{\left( {1 + 8,4\% } \right)^n} \Leftrightarrow 2 = {\left( {1 + 8,4\% } \right)^n} \Rightarrow n = {\log _{1 + 8,4\% }}2 \approx 8,59.\)
Vậy sau 9 năm thì người đó thu được số tiền gấp đôi ban đầu.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(f\left( x \right)={{\log }_{2}}x,\) với \(x>0.\) Tính giá trị biểu thức \(P=f\left( \frac{2}{x} \right)+f\left( x \right).\)
Trong không gian với hệ tọa độ Oxyz, mặt cầu tâm \(I\left( 2;1;-3 \right)\) và tiếp xúc với trục Oy có phương trình là:
Đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số \(y=\frac{2x-3}{x+1}\) là
Cho hàm số \(y=f\left( x \right)\) có đồ thị như hình vẽ bên dưới.
Mệnh đề nào dưới đây đúng?
Cho hình lập phương ABCD.MNPQ cạnh bằng A. Tính khoảng cách từ điểm A đến mặt phẳng \(\left( CNQ \right).\)
Tìm m để đồ thị hàm số \(y={{x}^{4}}-2m{{x}^{2}}+{{m}^{2}}-1\) cắt trục hoành tại 4 điểm phân biệt.
Cho hình hộp đứng ABCD.A'B'C'D' có AA'=2, đáy ABCD là hình thoi với ABC là tam giác đều cạnh 4. Gọi M,N,P lần lượt là trung điểm của B'C',C'D',DD' và Q thuộc cạnh BC sao cho QC=3QB. Tính thể tích tứ diện MNPQ.
Có 60 tấm thẻ đánh số từ 1 đến 60. Rút ngẫu nhiên 3 thẻ. Tính xác suất để tổng các số ghi trên 3 thẻ chia hết cho 3.
Tập xác định của hàm số \(y={{\log }_{3}}\left( x+1 \right)\) là
Cho hàm số \(y=f\left( x \right)\) có bảng biến thiên như hình sau:
Số nghiệm của phương trình \(f\left( x \right)=-3\) là
Cho hình nón có chiều cao bằng 3 (cm), góc giữa trục và đường sinh bằng \({{60}^{0}}.\) Thể tích khối nón bằng
Cho hàm số \(y=f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đồ thị như hình vẽ bên.
Tập hợp tất cả các giá trị thực của tham số m để phương trình \(f\left( 2\sin x+1 \right)=m\) có nghiệm thuộc nửa khoảng \(\left[ 0;\frac{\pi }{6} \right)\) là
Tính đạo hàm của hàm số \(y={{2021}^{x}}\) ta được đáp án đúng là?
Cho hàm số \(f\left( x \right)\) có đạo hàm là \(f'\left( x \right)=x{{\left( x+1 \right)}^{2}}{{\left( x-2 \right)}^{4}},\forall x\in \mathbb{R}.\) Số điểm cực tiểu của hàm số \(y=f\left( x \right)\) là