Một người lần đầu gửi vào ngân hàng 100 triệu đồng với kì hạn theo quý (3 tháng), lãi suất \(2\% \) một quý. Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi quý số tiền lãi sẽ được nhập vào gốc để tính lãi cho quý tiếp theo. Sau đúng 6 tháng, người đó gửi thêm \(100\) triệu đồng với kỳ hạn và lãi suất như trước đó. Tổng số tiền người đó nhận được \(1\) năm sau khi gửi tiền (cả vốn lẫn lãi) gần nhất với kết quả nào sau đây?
A. \(212\) triệu đồng
B. \(216\) triệu đồng
C. \(210\) triệu đồng
D. \(220\) triệu đồng
Lời giải của giáo viên
Số tiền cả gốc và lãi người đó nhận được sau khi gửi \(100\) triệu trong \(6\) tháng đầu là \(100{\left( {1 + 2\% } \right)^2}\) triệu đồng.
Sau 6 tháng người đó gửi thêm \(100\) triệu đồng nên số tiền gốc lú này là \(100 + 100{\left( {1 + 0,02} \right)^2}\)
Sau 6 tháng còn lại, thì người đó nhận được tổng số tiền là
\(T = \left( {100 + 100{{\left( {1 + 0,02} \right)}^2}} \right){\left( {1 + 0,02} \right)^2} \approx 212,28\) triệu đồng.
Chọn A.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hình chóp \(S.ABC\) có \(SA \bot \left( {ABC} \right),\) tam giác \(ABC\) vuông ở \(B.\) \(AH\) là đường cao của \(\Delta SAB.\) Tìm khẳng định sai.
Thể tích khối lăng trụ có diện tích đáy là \(B\) và chiều cao \(h\) được tính bởi công thức
Trong không gian \(Oxyz\), phương trình của mặt phẳng \(\left( P \right)\) đi qua điểm \(B\left( {2;1; - 3} \right)\), đồng thời vuông góc với hai mặt phẳng \(\left( Q \right):x + y + 3z = 0,\left( R \right):2x - y + z = 0\) là:
Tiếp tuyến với đồ thị hàm số \(y = {x^3} + 3{x^2} - 2\) tại điểm có hoành độ bằng \( - 3\) có phương trình là
Cho lăng trụ đều \(ABC.EFH\) có tất cả các cạnh bằng \(a\). Gọi \(S\) là điểm đối xứng của \(A\) qua \(BH\). Thể tích khối đa diện \(ABCSFH\) bằng
Cho hình chóp \(S.ABCD\) đều có \(AB = 2\) và \(SA = 3\sqrt 2 .\) Bán kính của mặt cầu ngoại tiếp hình chóp đã cho bằng
Gọi \(S\) là tập hợp các giá trị thực của tham số \(m\) sao cho phương trình \({x^9} + 3{x^3} - 9x = m + 3\sqrt[3]{{9x + m}}\) có đúng hai nghiệm thực. Tính tổng các phần tử của \(S\).
Trong không gian \(Oxyz,\) cho mặt phẳng \(\left( P \right):2x - y + z + 4 = 0.\) Khi đó mặt phẳng \(\left( P \right)\) có một véc tơ pháp tuyến là
Tập hợp tất cả các giá trị của tham số thực \(m\) để hàm số \(y = \ln \left( {{x^2} + 1} \right) - mx + 1\) đồng biến trên \(\mathbb{R}.\)
Trong không gian với hệ tọa độ \(Oxyz,\) cho mặt phẳng \(\left( P \right):x - 2y + 2z - 2 = 0\) và điểm \(I\left( { - 1;2; - 1} \right)\). Viết phương trình mặt cầu \(\left( S \right)\) có tâm \(I\) và cắt mặt phẳng \(\left( P \right)\) theo giao tuyến là đường tròn có bán kính bằng \(5.\)
Hình nón có diện tích xung quanh bằng \(24\pi \) và bán kính đường tròn đáy bằng \(3\). Đường sinh của hình nón có độ dài bằng:
Cho \(\int\limits_1^2 {f\left( x \right)dx = 1} \) và \(\int\limits_2^3 {f\left( x \right)dx = - 2.} \) Giá trị của \(\int\limits_1^3 {f\left( x \right)dx} \) bằng
Cho một hình trụ có chiều cao bằng \(2\) và bán kính đáy bằng \(3\). Thể tích khối trụ đã cho bằng
Trong một cuộc thi pha chế, mỗi đội chơi được sử dụng tối đa \(24g\) hương liệu, \(9\) lít nước và \(210g\) đường để pha chế nước cam và nước táo. Để pha chế \(1\) lít nước cam cần \(30g\) đường, \(1\) lít nước và \(1g\) hương liệu; còn để pha chế \(1\) lít nước táo, cần \(10g\) đường, \(1\) lít nước và \(4g\) hương liệu. Mỗi lít nước cam nhận được \(60\) điểm và mỗi lít nước táo nhận được \(80\) điểm. Gọi \(x,y\) lần lượt là số lít nước cam và nước táo mà mỗi đội cần pha chế sao cho tổng điểm đạt được là lớn nhất. Tính \(T = 2{x^2} + {y^2}\).
Tìm giá trị cực tiểu \({y_{CT}}\) của hàm số \(y = {x^3} - 3{x^2}\)