Một tàu lửa đang chạy với vận tốc 200 m/s thì người lái tàu đạp phanh; từ thời điểm đó, tàu chuyển động chậm dần đều với vận tốc \(v\left( t \right)=200-20t\) m/s. Trong đó t khoảng thời gian tính bằng giây, kể từ lúc bắt đầu đạp phanh. Hỏi từ lúc đạp phanh đến khi dừng hẳn, tàu còn di chuyển được quãng đường là
A. \(1000\text{ m}.\)
B. \(500\text{ m}\text{.}\)
C. \(1500\text{ m}\text{.}\)
D. \(2000\text{ m}\text{.}\)
Lời giải của giáo viên
Lấy mốc thời gian là lúc bắt đầu đạp phanh. Giả sử \({{t}_{0}}\) là thời điểm tàu dừng hẳn.
Khi đó \(v\left( {{t}_{0}} \right)=0\Leftrightarrow 200-20{{t}_{0}}=0\Leftrightarrow {{t}_{0}}=10\text{ }\left( \text{s} \right).\)
Như vậy từ lúc đạp phanh đến lúc tàu dừng hẳn là \(10\text{ }\left( \text{s} \right).\)
Quãng đường tàu di chuyển được trong khoảng thời gian \(10\text{ }\left( \text{s} \right)\) là
\(S=\int\limits_{0}^{10}{\left( 200-20t \right)}=1000\text{ }\,\left( \text{m} \right).\)
CÂU HỎI CÙNG CHỦ ĐỀ
Trong không gian với hệ tọa độ \(Oxyz\), cho đường thẳng \(\left( d \right):\left\{ \begin{align} & x=3+t \\ & y=1-2t \\ & z=2 \\ \end{align} \right.\) Một vectơ chỉ phương của d là
Cho hàm số bậc bốn \(y=f\left( x \right)\). Đồ thị hình bên dưới là đồ thị của đạo hàm \(f'\left( x \right)\). Hàm số \(g\left( x \right)=f\left( \sqrt{{{x}^{2}}+2x+2} \right)\) có bao nhiêu điểm cực trị ?
Cho hàm số \(y=\frac{2x-1}{x+5}\) Khi đó tiệm cận ngang của đồ thị hàm số là đường thẳng nào trong các đường thẳng sau đây?
Tập nghiệm của bất phương trình \({{\log }_{\frac{1}{2}}}\left( x-2 \right)\ge -1\)
Phương trình tham số của đường thẳng đi qua điểm \(M\left( 3;-1;2 \right)\) và có vectơ chỉ phương \(\overrightarrow{u}=\left( 4;5;-7 \right)\) là:
Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?
Có bao nhiêu giao điểm của đồ thị hàm số \(y={{x}^{3}}+3x-3\) với trục Ox?
Cho tập hợp M có 30 phần tử. Số tập con gồm 5 phần tử của M là
Cho mặt cầu \(\left( S \right):\,{{x}^{2}}+{{y}^{2}}+{{z}^{2}}-2x+4y+2z-3=0\) Tính bán kính R của mặt cầu \(\left( S \right)\)
Gieo hai con súc sắc. Xác suất để tổng số chấm trên hai mặt bằng \(11\) là:
Điểm M trong hình vẽ bên là điểm biểu diễn số phức?
Cho số phức z thỏa \(\left| z \right|=1\). Gọi m, M lần lượt là giá trị nhỏ nhất, giá trị lớn nhất của biểu thức \(P=\left| {{z}^{5}}+{{{\bar{z}}}^{3}}+6z \right|-2\left| {{z}^{4}}+1 \right|\). Tính M-m.
Có bao nhiêu giá trị nguyên dương của c để tồn tại các số thực \(a,\,\,b>1\) thỏa mãn \({{\log }_{9}}a={{\log }_{12}}b={{\log }_{16}}\frac{5b-a}{c}\).
Cho hàm số \(f\left( x \right)\) có đạo hàm liên tục trên đoạn \(\left[ 1;3 \right]\) thỏa mãn \(f\left( 1 \right)=2\) và \(f\left( 3 \right)=9\). Tính \(I=\int\limits_{1}^{3}{{f}'\left( x \right)\text{d}x}\).
Trong không gian\(Oxyz\), cho hai điểm \(A\left( 2;3;-1 \right)\) và \(B\left( 0;-1;1 \right)\). Trung điểm của đoạn thẳng \(AB\) có tọa độ là