Người ta muốn mạ vàng cho một cái hộp có đáy hình vuông không nắp có thể tích là 4 lít. Tìm kích thước của hộp đó để lượng vàng dùng mạ là ít nhất. Giả sử độ dày của lớp mạ tại mọi nơi trên mặt ngoài hộp là như nhau.
A. Cạnh đáy bằng 1, chiều cao bằng 2
B. Cạnh đáy bằng 4, chiều cao bằng 3.
C. Cạnh đáy bằng 2, chiều cao bằng 1.
D. Cạnh đáy bằng 3, chiều cao bằng 4.
Lời giải của giáo viên
Gọi x là cạnh của đáy hộp.
h là chiều cao của hộp.
S(x) là diện tích phần hộp cần mạ.
Khi đó, khối lượng vàng dùng mạ tỉ lệ thuận với S.
Ta có: \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qacaWGtbWdamaabmaabaWdbiaadIhaa8aacaGLOaGaayzkaaWdbiab % g2da9iaadIhapaWaaWbaaSqabeaapeGaaGOmaaaakiabgUcaRiaais % dacaWG4bGaamiAa8aadaqadaqaa8qacaaIXaaapaGaayjkaiaawMca % aaaa!42C0! S\left( x \right) = {x^2} + 4xh\left( 1 \right)\)\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qacaGG7aGaamOvaiabg2da9iaadIhapaWaaWbaaSqabeaapeGaaGOm % aaaakiaadIgacqGH9aqpcaaI0aGaeyypa0JaeyOpa4JaamiAaiabg2 % da9iaaisdacaGGVaGaamiEa8aadaahaaWcbeqaa8qacaaIYaaaaOWd % amaabmaabaWdbiaaikdaa8aacaGLOaGaayzkaaWdbiaac6caaaa!4829! ;V = {x^2}h = 4 = > h = 4/{x^2}\left( 2 \right).\)
Từ (1) và (2), ta có \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaCa % aaleqabaGaaGOmaaaakiabgUcaRmaalaaabaGaaGymaiaaiAdaaeaa % caWG4baaaaaa!3B4E! S (x)={x^2} + \frac{{16}}{x}\)
Dựa vào BBT, ta có S(x) đạt GTNN khi x = 2.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabg2 % da9iaadggacaWG4bWaaWbaaSqabeaacaaIZaaaaOGaey4kaSIaamOy % aiaadIhadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaWGJbGaamiEai % abgUcaRiaaigdaaaa!42EC! y = a{x^3} + b{x^2} + cx + 1\) có bảng biến thiên như sau:
Mệnh đề nào dưới đây đúng?
Cho đồ thị hàm số y = f(x) có đồ thị như hình vẽ. Hàm số y = f(x) đồng biến trên khoảng nào dưới đây?
Công thức nào sau đây là đúng với cấp số cộng có số hạng đầu \(u_1\), công sai d, \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgw % MiZkaaikdacaGGUaaaaa!3A1A! n \ge 2.\) ?
Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O cạnh a, SO vuông góc với mặt phẳng (ABCD) và SO = a. Khoảng cách giữa SC và AB bằng
Cho hàm số y = f(x) có bảng biến thiên như sau:
Mệnh đề nào dưới đây đúng?
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy. Tính thể tích khối cầu ngoại tiếp khối chóp SABCD.
Cho hình tứ diện OABC có đáy OBC là tam giác vuông tại O,OB =a ,OC= \(a\sqrt3\) . Cạnh OA vuông góc với mặt phẳng (OBC), \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4taiaadg % eacqGH9aqpcaWGHbWaaOaaaeaacaaIZaaaleqaaaaa!3A52! OA = a\sqrt 3 \) gọi M là trung điểm của BC . Tính theo a khoảng cách h giữa hai đường thẳng AB và OM.
Nghiệm của phương trình \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqaM5cvLHfij5gC1rhimfMBNvxyNvga7TNm951EYG % xlX0xFTWLzYf2y7ftF7HtF9adatCvAUfeBSjuyZL2yd9gzLbvyNv2C % aerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLD % harqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY-Hhbbf9v8qqaqFr % 0xc9pk0xbba9q8WqFfeaY-biLkVcLq-JHqpepeea0-as0Fb9pgeaYR % Xxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaaba % aaaaaaaapeGaaGOma8aadaahaaWcbeqaa8qacaaIYaGaamiEaiabgk % HiTiaaigdaaaGccqGHsisldaWcaaWdaeaapeGaaGymaaWdaeaapeGa % aGioaaaacqGH9aqpcaaIWaaaaa!4F78! {2^{2x - 1}} - \frac{1}{8} = 0\) là
Cho hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabg2 % da9maalaaabaGaamiEaiabgUcaRiaaikdaaeaacaWG4bGaey4kaSIa % aGymaaaaaaa!3D3D! y = \frac{{x + 2}}{{x + 1}}\) có đồ thị là (C). Gọi d là khoảng cách từ giao điểm 2 tiệm cận của (C) đến một tiếp tuyến bất kỳ của (C). Giá trị lớn nhất có thể đạt được là:
Trong không gian Oxyz, cho hình thoi ABCD với A(-1;2;1) ; B (2;3;2). Tâm I của hình thoi thuộc đường thẳng \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiaacQ % dadaWcaaqaaiaadIhacqGHRaWkcaaIXaaabaGaeyOeI0IaaGymaaaa % cqGH9aqpdaWcaaqaaiaadMhaaeaacqGHsislcaaIXaaaaiabg2da9m % aalaaabaGaamOEaiabgkHiTiaaikdaaeaacaaIXaaaaaaa!4421! d:\frac{{x + 1}}{{ - 1}} = \frac{y}{{ - 1}} = \frac{{z - 2}}{1}\). Tọa độ đỉnh D là
Trong không gian với hệ tọa độ Oxyz cho đường thẳng \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l % bbf9q8WrFfeuY-Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0-yr0R % Yxir-Jbba9q8aq0-yq-He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa % caGaaeqabaqaaeaadaaakeaacaWGKbGaaiOoamaalaaabaGaamiEai % abgUcaRiaaiodaaeaacaaIYaaaaiabg2da9maalaaabaGaamyEaiab % gkHiTiaaigdaaeaacaaIXaaaaiabg2da9maalaaabaGaamOEaiabgk % HiTiaaigdaaeaacqGHsislcaaIZaaaaaaa!40A4! d:\frac{{x + 3}}{2} = \frac{{y - 1}}{1} = \frac{{z - 1}}{{ - 3}}\). Hình chiếu vuông góc của d trên mặt phẳng (Oyz) là một đường thẳng có vectơ chỉ phương là
Trong không gian với hệ tọa độ Oxyz, cho hai điểm A( -3;1; -4) và B(1; -1;2). Phương trình mặt cầu (S) nhận AB làm đường kính là
Cho A(1;-3;2) và mặt phẳng \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qadaqadaqaaiaadcfaaiaawIcacaGLPaaacaGG6aGaaGOmaiaadIha % cqGHsislcaWG5bGaey4kaSIaaG4maiaadQhacqGHsislcaaIXaGaey % ypa0JaaGimaaaa!42DA! \left( P \right):2x - y + 3z - 1 = 0\) . Viết phương trình tham số đường thẳng d đi qua A, vuông góc với (P)
Bất phương trình \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac+ % gacaGGNbWaaSbaaSqaaiaaikdaaeqaaOWaaSaaaeaacaWG4bWaaWba % aSqabeaacaaIYaaaaOGaeyOeI0IaaGOnaiaadIhacqGHRaWkcaaI4a % aabaGaaGinaiaadIhacqGHsislcaaIXaaaaiabgwMiZkaaicdaaaa!45E6! {\log _2}\frac{{{x^2} - 6x + 8}}{{4x - 1}} \ge 0\) có tập nghiệm là \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaiabg2 % da9maajadabaWaaSaaaeaacaaIXaaabaGaaGinaaaacaGG7aGaamyy % aaGaayjkaiaaw2faaiabgQIiipaajibabaGaamOyaiaacUdacqGHRa % WkcqGHEisPaiaawUfacaGLPaaaaaa!445E! T = \left( {\frac{1}{4};a} \right] \cup \left[ {b; + \infty } \right)\). Hỏi M = a+ b bằng
Trong không gian với hệ tọa độ Oxyx , cho đường thẳng \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiaacQ % dadaWcaaqaaiaadIhacqGHsislcaaIXaaabaGaaGymaaaacqGH9aqp % daWcaaqaaiaadMhacqGHsislcaaIYaaabaGaaGymaaaacqGH9aqpda % WcaaqaaiaadQhacqGHsislcaaIXaaabaGaaGOmaaaaaaa!43FB! d:\frac{{x - 1}}{1} = \frac{{y - 2}}{1} = \frac{{z - 1}}{2}\),A(2;1;4) . Gọi H(a;b;c) là điểm thuộc d sao cho AH có độ dài nhỏ nhất. Tính \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaiabg2 % da9iaadggadaahaaWcbeqaaiaaiodaaaGccqGHRaWkcaWGIbWaaWba % aSqabeaacaaIZaaaaOGaey4kaSIaam4yamaaCaaaleqabaGaaG4maa % aaaaa!3F1D! T = {a^3} + {b^3} + {c^3}\).