Lời giải của giáo viên
Đặt \(\left\{ \begin{array}{l}u = x\\dv = \cos xdx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = dx\\v = \sin x\end{array} \right.\)
\(\begin{array}{l} \Rightarrow \int {x\cos xdx} \\ = x\sin x - \int {\sin xdx} \\ = x\sin x + \cos x + C\end{array}\)
CÂU HỎI CÙNG CHỦ ĐỀ
Tập hợp các điểm biểu diễn các số phức \(z\) thỏa mãn \(\left| {z + i - 1} \right| = \left| {\overline z - 2i} \right|\) là:
Thể tích khối tròn xoay tạo thành khi quay hình phẳng giới hạn bởi các đường: \(y = {x^2} - 4x + 4,\) \(y = 0,\) \(x = 0,\) \(x = 3\) xung quanh trục \(Ox\) là:
Trong không gian Oxyz, cho \(A\left( {3;1;2} \right),\) \(B\left( { - 3; - 1;0} \right)\) và mặt phẳng \(\left( P \right):\,\,x + y + 3z - 14 = 0\). Điểm M thuộc mặt phẳng (P) sao cho \(\Delta MAB\) vuông tại M. Tính khoảng cách từ điểm M đến mặt phẳng Oxy.
Diện tích \(S\) của hình phẳng giới hạn bởi đồ thị hàm số \(y = 4 - {x^2}\) và trục hoành là:
Trong không gian với hệ tọa độ \(Oxyz\), cho điểm \(A\left( {3; - 3;5} \right)\) và đường thẳng:\(\left( d \right):\frac{{x + 2}}{1} = \frac{y}{3} = \frac{{z - 3}}{4}\). Phương trình của đường thẳng qua \(A\) và song song với \(\left( d \right)\) là
Giá trị của \(\int\limits_0^{16} {\frac{{dx}}{{\sqrt {x + 9} - \sqrt x }}} \) là:
Trong không gian với hệ tọa độ Oxyz, bán kính của mặt cầu đi qua bốn điểm \(O\left( {0;0;0} \right);\) \(A\left( {4;0;0} \right);\) \(B\left( {0;4;0} \right);\) \(C\left( {0;0;4} \right)\) là:
Thể tích khối tròn xoay tạo thành khi quay hình phẳng giới hạn bởi các đường \(y = {x^2};\) \(x = {y^2}\) xung quanh trục \(Ox\) là:
Trong không gian với hệ tọa độ \(Oxyz\), cho hai mặt phẳng \(\left( P \right):2x + y - z - 8 = 0\),\(\left( Q \right):3x + 4y - z - 11 = 0\). Gọi \(\left( d \right)\) là giao tuyến của \(\left( P \right)\) và \(\left( Q \right)\), phương trình của đường thẳng \(\left( d \right)\) là:
Hai điểm biểu diễn số phức \(z = 1 + i\) và \(z' = - 1 + i\) đối xứng nhau qua:
Rút gọn biểu thức \(M = {i^{2018}} + {i^{2019}}\) ta được:
Trong không gian với hệ tọa độ \(Oxyz\), cho 3 điểm \(A\left( {0;0;3} \right),\) \(B\left( {1;1;3} \right),\) \(C\left( {0;1;1} \right)\). Khoảng cách từ gốc tọa độ \(O\) đến mặt phẳng \(\left( {ABC} \right)\) bằng:
Trong không gian với hệ tọa độ \(Oxyz\), tâm và bán kính của mặt cầu \(\left( S \right):\)\({x^2} + {y^2} + {z^2} + 4x - 2y + 6z + 5 = 0\) là: