Ông Anh muốn mua một chiếc ô tô trị giá 700 triệu đồng nhưng ông chỉ có 500 triệu đồng và muốn vay ngân hàng 200 triệu đồng theo phương thức trả góp với lãi suất 0,75% tháng. Hỏi hàng tháng ông Anh phải trả số tiền là bao nhiêu để sau đúng hai năm thì trả hết nợ ngân hàng?
A. 913.5000 đồng
B. 997.0000 đồng
C. 997.1000 đồng
D. 913.7000 đồng
Lời giải của giáo viên
\(X = \frac{{200.{{\left( {1 + \frac{{0,75}}{{100}}} \right)}^{24}}.\frac{{0,75}}{{100}}}}{{{{\left( {1 + \frac{{0,75}}{{100}}} \right)}^{24}} - 1}} \approx 913.7000\) đồng
CÂU HỎI CÙNG CHỦ ĐỀ
Trong không gian Oxyz, cho đường thẳng \(d:\left\{ \begin{array}{l} x = 1\\ y = 2 + 3t\\ z = 5 - t \end{array} \right.(t \in R).\) Vectơ nào dưới đây là vectơ chỉ phương của d?
Tìm tất cả các giá trị thực của tham số m để hàm số \(y=-\frac{{{x}^{3}}}{3}+m{{x}^{2}}+2\) nghịch biến trên \(\mathbb{R}\)
Hàm số nào dưới đây đồng biến trên tập \(\mathbb{R}\) ?
Nếu \({{\left( 7+4\sqrt{3} \right)}^{a-1}}<7-4\sqrt{3}\) thì
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng 2a và cạnh bên bằng 3a. Một hình nón có đỉnh S và đáy là hình tròn ngoại tiếp hình vuông ABCD. Diện tích xung quanh của hình nón bằng
Cho hình lăng trụ tam giác đều \(ABC.{A}'{B}'{C}'\) có cạnh đáy bằng a và cạnh bên bằng 2a. Một hình trụ có hai đáy là hai hình tròn ngoại tiếp hai tam giác ABC và \({A}'{B}'{C}'.\) Diện tích xung quanh của hình trụ bằng
Cho hàm số y=f(x) có đạo hàm trên \(\left( a;b \right)\). Phát biểu nào sau đây là đúng ?
Cho tích phân \(I=\int\limits_{0}^{\pi }{{{x}^{2}}\cos x\text{d}x}\) và \(u={{x}^{2}},\text{d}v=\cos x\,\text{d}x\). Khẳng định nào sau đây đúng ?
Tìm tập xác định D của hàm số \(y={{\log }_{3}}\left( {{x}^{2}}-4x+3 \right)\).
Giá trị của biểu thức \(K = \frac{{{2^3}{{.2}^{ - 1}} + {5^{ - 3}}{{.5}^4}}}{{{{10}^{ - 3}}:{{10}^{ - 2}} - {{(0,25)}^0}}}\) là
Trong không gian Oxyz, cho hai điểm \(A\left( 1;2;1 \right)\) và \(B\left( 4;5;-2 \right).\) Đường thẳng AB cắt mặt phẳng \(\left( P \right):3x-4y+5z+6=0\) tại điểm M. Tính tỉ số \(\frac{BM}{AM}.\)
Trong không gian với hệ tọa độ Oxyz, xét mặt cầu có phương trình \({{x}^{2}}-2ax+{{y}^{2}}-2by+{{\left( z-c \right)}^{2}}=0,\) với a,b,c là các tham số và a,b không đồng thời bằng 0. Mệnh đề nào dưới đây đúng ?
Tính giá trị của biểu thức \(A={{\log }_{a}}\frac{1}{{{a}^{2}}}\) với a>0 và \(a\ne 1\)?
Cho số phức \(z=a+bi(a,b\in \mathbb{R})\) thỏa mãn \(2z-5\bar{z}=-9-14i.\)
Tính S=a+b
Xét các số nguyên dương a,b sao cho phương trình \(b{{\ln }^{2}}x+a\ln x+3=0\) có hai nghiệm phân biệt \({{x}_{1}},{{x}_{2}}\) và phương trình \(3{{\log }^{2}}x+a\log x+b=0\) có hai nghiệm phân biệt \({{x}_{3}},{{x}_{4}}\) thỏa mãn \(\ln {{\left( {{x}_{1}}{{x}_{2}} \right)}^{10}}>\log {{\left( {{x}_{3}}{{x}_{4}} \right)}^{e}}.\) Tính giá trị nhỏ nhất \({{S}_{\min }}\) của S=5a+3b.