Câu hỏi Đáp án 2 năm trước 23

Ông Nam dự định gửi vào ngân hàng một số tiền với lãi suất 6,6%/năm. Biết rằng nếu không rút tiền khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho năm tiếp theo. Tính số tiền tối thiểu x triệu đồng \(\left( {x \in N} \right)\) ông Nam gửi vào ngân hàng để sau 3 năm số tiền lãi đủ mua một chiếc xe gắn máy trị giá 26 triệu đồng.

A. 191 triệu đồng 

B. 123 triệu đồng 

C. 124 triệu đồng 

Đáp án chính xác ✅

D. 145 triệu đồng 

Lời giải của giáo viên

verified HocOn247.com

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Trong không gian với hệ tọa độ Oxyz, phương trình đường thẳng d đi qua điểm A(1;2;1) và vuông góc với mặt phẳng \(\left( P \right):\,x - 2y + z - 1 = 0\) có dạng

Xem lời giải » 2 năm trước 52
Câu 2: Trắc nghiệm

Trong không gian với hệ tọa độ Oxyz, cho hai điểm \(A\left( {1;\,2;\,1} \right),B\left( {3;\,4;\,0} \right)\), mặt phẳng \(\left( P \right):ax + by + cz + 46 = 0\). Biết rằng khoảng cách từ A, B đến mặt phẳng (P) lần lượt bằng 6 và 3. Giá trị của biểu thức \(T=a+b+c\) bằng

Xem lời giải » 2 năm trước 45
Câu 3: Trắc nghiệm

Tập xác định của hàm số \(y = {\left( {{x^2} - 3x + 2} \right)^{\frac{3}{5}}} + {\left( {x - 3} \right)^{ - 2}}\) là

Xem lời giải » 2 năm trước 44
Câu 4: Trắc nghiệm

Cho hàm số \(y=a^x\) với \(0 < a \ne 1\). Mệnh đề nào sau đây SAI?

Xem lời giải » 2 năm trước 44
Câu 5: Trắc nghiệm

Trong không gian với hệ tọa độ Oxyz, mặt cầu (S) có tâm I(3;- 3;1) và đi qua điểm A(5;- 2;1) có phương trình là

Xem lời giải » 2 năm trước 43
Câu 6: Trắc nghiệm

Cho hai số thực x, y thỏa mãn \({\log _{\sqrt 3 }}\left( {{y^2} + 8y + 16} \right) + {\log _2}\left[ {\left( {5 - x} \right)\left( {1 + x} \right)} \right] = 2{\log _3}\frac{{5 + 4x - {x^2}}}{3} + {\log _2}{\left( {2y + 8} \right)^2}.\) Gọi S là tập các giá trị nguyên của tham số m để giá trị lớn nhất của biểu thức \(P = \left| {\sqrt {{x^2} + {y^2}}  - m} \right|\) không vượt quá 10. Hỏi S có bao nhiêu tập con không phải là tập rỗng?

Xem lời giải » 2 năm trước 43
Câu 7: Trắc nghiệm

Gọi \(z_1, z_2\) là hai nghiệm phức của phương trình \(2{z^2} + \sqrt 3 z + 3 = 0\). Giá trị của biểu thức \({z_1}^2 + {z_2}^2\) bằng

Xem lời giải » 2 năm trước 42
Câu 8: Trắc nghiệm

Tập hợp điểm biểu diễn số phức z thỏa mãn điều kiện \(\left| {\overline z  + 1 + 2i} \right| = 1\) là

Xem lời giải » 2 năm trước 42
Câu 9: Trắc nghiệm

Họ nguyên hàm của hàm số \(f\left( x \right) = \cos 2x\) là

Xem lời giải » 2 năm trước 41
Câu 10: Trắc nghiệm

Cho hàm \(y=f(x)\) có \(f(2)=2, f(3)=5\); hàm số \(y=f'(x)\) liên tục trên [2;3]. Khi đó \(\int\limits_2^3 {f'\left( x \right){\rm{d}}x} \) bằng

Xem lời giải » 2 năm trước 41
Câu 11: Trắc nghiệm

Cho hàm số \(y = {x^3}--8{x^2} + 8x\) có đồ thị (C) và hàm số \(y = {x^2} + \left( {8 - a} \right)x - b\) (với \(a,b \in R\)) có đồ thị (P). Biết đồ thị hàm số (C) cắt (P) tại 3 điểm có hoành độ nằm trong đoạn [- 1;5]. Khi \(a\) đạt giá trị nhỏ nhất thì tích \(ab\) bằng

Xem lời giải » 2 năm trước 40
Câu 12: Trắc nghiệm

Cho hàm số bậc ba \(y=f(x)\) có đồ thị như hình vẽ. Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn [0;9] sao cho bất phương trình \({2^{{f^2}\left( x \right) + f\left( x \right) - m}} - {16.2^{{f^2}\left( x \right) - f\left( x \right) - m}} - {4^{f\left( x \right)}} + 16 < 0\) có nghiệm \(x \in \left( { - 1;\,1} \right)\)?

Xem lời giải » 2 năm trước 40
Câu 13: Trắc nghiệm

Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng \(\left( P \right):mx + \left( {m + 1} \right)y - z - 2m - 1 = 0\), với m là tham số. Gọi (T) là tập hợp các điểm \(H_m\) là hình chiếu vuông góc của điểm H(3;3;0) trên (P). Gọi \(a, b\) lần lượt là khoảng cách lớn nhất, khoảng cách nhỏ nhất từ O đến một điểm thuộc (T). Khi đó, \(a+b\) bằng

Xem lời giải » 2 năm trước 40
Câu 14: Trắc nghiệm

Cho hình chóp S.ABC có SA vuông góc với (ABC), \(AB = a,AC = a\sqrt 2 ,\,\widehat {BAC} = {45^0}\). Gọi \(B_1, C_1\) lần lượt là hình chiếu vuông góc của A lên SB, SC. Thể tích khối cầu ngoại tiếp hình chóp \(ABCC_1B_1\) bằng

Xem lời giải » 2 năm trước 40
Câu 15: Trắc nghiệm

Số đường tiệm cận của đồ thị hàm số \(y = \frac{x}{{{x^2} + 9}}\) là

Xem lời giải » 2 năm trước 40

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »