Lời giải của giáo viên
Có 9 mặt đối xứng của khối lập phương.
Trong đó có 3 mặt phẳng đi qua trung điểm 4 cạnh song song với nhau chia khối lập phương thành 2 khối hộp chữ nhật.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(y=f\left( x \right)\) liên tục trên \(\mathbb{R}\) có đồ thị như hình vẽ.
Có bao nhiêu giá trị nguyên của tham số \(m\) để phương trình \(f\left( \sqrt{4+2f\left( \cos x \right)} \right)=m\) có nghiệm \(x\in \left[ 0;\frac{\pi }{2} \right).\)
Cho hàm số \(y={{x}^{3}}-3{{x}^{2}}+mx-1\) với \(m\) là tham số thực. Tìm tất cả các giá trị của tham số \(m\) để hàm số đạt cực trị tại hai điểm \({{x}_{1}};{{x}_{2}}\) thỏa mãn \(x_{1}^{2}+x_{2}^{2}=6.\)
Phương trình \(\log _{2}^{2}x={{\log }_{2}}\frac{{{x}^{4}}}{2}\) có nghiệm là \(a,b.\) Khi đó \(a.b\) bằng
Có bao nhiêu giá trị nguyên dương của \(m\) để hàm số \(y=\frac{x-8}{x-m}\) đồng biến trên từng khoảng xác định của nó?
Tổng các nghiệm của phương trình \(\log _{2}^{2}\left( 3x \right)+{{\log }_{3}}\left( 9x \right)-7=0\) bằng
Tìm hoành độ các giao điểm của đường thẳng \(y=2x-\frac{13}{4}\) với đồ thị hàm số \(y=\frac{{{x}^{2}}-1}{x+2}.\)
Cho hàm số \(y=\frac{x-\sqrt{{{x}^{2}}+2x}}{{{x}^{2}}+mx-m-3}\) có đồ thị \(\left( C \right)\). Giá trị của \(m\) để \(\left( C \right)\) có đúng hai tiệm cận thuộc tập nào sau đây?
Khoảng nghịch biến của hàm số \(y={{x}^{3}}-3x+3\) là \(\left( a;b \right)\) thì \(P={{a}^{2}}-2ab\) bằng
Tập xác định của hàm số \(y={{\log }_{12}}\left( {{x}^{2}}-5x-6 \right)\)
Phương trình \({{2}^{{{x}^{2}}+x-3}}=8\) có hai nghiệm là \(a,b.\) Khi đó \(a+b\) bằng
Tìm giá trị của \(m\) để hàm số \(y={{x}^{3}}-{{x}^{2}}+mx-1\) có hai điểm cực trị.
Đường cong trong hình vẽ bên là đồ thị của hàm số nào dưới đây?
Cho hình lăng trụ đứng \(ABC.A'B'C'\) có đáy \(ABC\) vuông tại \(A,AB=a\sqrt{3},AC=AA'=a.\) Sin góc giữa đường thẳng \(AC'\) và mặt phẳng \(\left( BCC'B' \right)\) bằng