Lời giải của giáo viên
CÂU HỎI CÙNG CHỦ ĐỀ
Hình chóp S.ABC có đáy là tam giác vuông tại B,AB = a, AC = 2a, SA vuông góc với mặt phẳng đáy, SA = 2a Gọi \(\varphi \) là góc tạo bởi hai mặt phẳng \(\left( {SAC} \right),\left( {SBC} \right)\). Tính \(\cos \varphi = ?\)
Trong không gian Oxyz, cho hai điểm \(I\left( {2;4; - 1} \right)\) và \(A\left( {0;2;3} \right)\). Phương trình mặt cầu có tâm I và đi qua điểm A là:
Nếu 2 số thực x, y thỏa: \(x\left( {3 + 2i} \right) + y\left( {1 - 4i} \right) = 1 + 24i\) thì x + y bằng:
Cho hàm số y = f(x) có đồ thị như hình vẽ bên dưới
Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
Trong không gian Oxyz, đường thẳng d song song với đường thẳng \(\left( \Delta \right):\left\{ \begin{array}{l}
x = - 2 + t\\
y = - 1 - 2t\\
z = 3 + t
\end{array} \right.\), có véctơ chỉ phương là:
Trong không gian Oxyz cho \(A\left( { - 3;0;0} \right),B\left( {0;0;3} \right),C\left( {0; - 3;0} \right)\) và mặt phẳng \(\left( P \right):x + y + z - 3 = 0\). Tìm trên (P) điểm M sao cho \(\left| {\overrightarrow {MA} + \overrightarrow {MB} - \overrightarrow {MC} } \right|\) nhỏ nhất
Điểm nào trong hình vẽ bên dưới là điểm biểu diễn của số phức z = 3 - 4i?
Trong không gian Oxyz, phương trình nào dưới đây là phương trình chính tắc của đường thẳng d đi qua điểm M(3; 2; 1) và có vectơ phương \(\overrightarrow u = \left( { - 1;5;2} \right)\)
Giá trị của a sao cho phương trình \({\log _2}\left( {x + a} \right) = 3\) có nghiệm x = 2 là
Trong không gian Oxyz cho hai điểm \(A\left( {10;6; - 2} \right),\,\,\,B\left( {5;10; - 9} \right)\) và mặt phẳng \(\left( \alpha \right):2x + 2y + z - 12 = 0\). Điểm M di động trên mặt phẳng \(\left( \alpha \right)\) sao cho MA, MB luôn tạo với \(\left( \alpha \right)\) các góc bằng nhau. Biết rằng M luôn thuộc một đường tròn \(\left( \omega \right)\) cố định. Hoành độ của tâm đường tròn \(\left( \omega \right)\) bằng
Tập nghiệm của phương trình \({4^x} - {5.2^x} + 4 = 0\) là
Tập nghiệm của bất phương trình \({\left( {0,125} \right)^{{x^2}}} > {\left( {\frac{1}{8}} \right)^{5x - 6}}\)
Tìm tất cả các giá thực của tham số m sao cho hàm số \(y = 2{x^3} - 3{x^2} - 6mx + m\) nghịch biến trên khoảng (-1; 1).
Cho khối nón tròn xoay có chiều cao h, đường sinh lvà bán kính đường tròn đáy bằng R. Tính diện tích toàn phần của khối nón.
Cho hàm số y = f(x) có bảng biến thiên sau
Giá trị cực tiểu của hàm số đã cho bằng