Tìm họ nguyên hàm của hàm số \(f(x) = 3x - \sin x\).
A. \(\int f (x){\mkern 1mu} {\rm{d}}x = 3{x^2} + \cos x + C\)
B. \(\int f (x){\mkern 1mu} {\rm{d}}x = \frac{{3{x^2}}}{2} - \cos x + C\)
C. \(\int f (x){\mkern 1mu} {\rm{d}}x = \frac{{3{x^2}}}{2} + \cos x + C\)
D. \(\int f (x){\mkern 1mu} {\rm{d}}x = 3 + \cos x + C\)
Lời giải của giáo viên
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hình chóp S.ABC có cạnh SA vuông góc với đáy, là tam giác ABC vuông tại A, biết \(AB = 3a,AC = 4a,SA = 5a\). Tìm bán kính của mặt cầu ngoại tiếp hình chóp S.ABC.
Với \(a,b\) là hai số thực dương tuỳ ý, \(\ln \left( {{{\rm{e}}^2}.{a^7}{b^5}} \right)\) bằng
Hàm số \(f\left( x \right)\) có bảng biến thiên sau
Hàm số đạt cực tiểu tại
Biết thể tích khối lập phương bằng \(16\sqrt 2 {a^3}\), vậy cạnh của khối lập phương bằng bao nhiêu?
Thể tích khối chóp có diện tích đáy \({a^2}\sqrt 2 \) và chiều cao \(3a\) là
Biết \(F(x)\) là một nguyên hàm của hàm \(f\left( x \right) = \cos 3x\) và \(F\left( {\frac{\pi }{2}} \right) = \frac{2}{3}\). Tính \(F\left( {\frac{\pi }{9}} \right)\).
Cho hàm số \(y = f\left( x \right)\) liên tục trên R và có đồ thị như hình vẽ dưới đây.
Số các giá trị nguyên của tham số m không vượt quá 5 để phương trình \(f\left( {{\pi ^x}} \right) - \frac{{{m^2} - 1}}{8} = 0\) có hai nghiệm phân biệt là
Cho hàm số \(y = f(x)\) có bảng biến thiên như sau
Tổng số tiệm cận ngang và tiệm cận đứng của đồ thị hàm số đã cho là
Phương trình \({\left( {\sqrt 5 } \right)^{{x^2} + 4x + 6}} = {\log _2}128\) có bao nhiêu nghiệm?
Giá trị \(\mathop {\lim }\limits_{x \to - 1} \frac{{{x^2} - 1}}{{x + 1}}\) bằng
Phương trình \({\left( {2 + \sqrt 3 } \right)^x} + \left( {1 - 2a} \right){\left( {2 - \sqrt 3 } \right)^x} - 4 = 0\) có 2 nghiệm phân biệt \({x_1},\,\,{x_2}\) thỏa mãn \({x_1} - {x_2} = {\log _{2 + \sqrt 3 }}3\). Khi đó \(a\) thuộc khoảng
Biết rằng giá trị lớn nhất của hàm số \(y = \left| {{x^4} - 38{x^2} + 120x + 4m} \right|\) trên đoạn \(\left[ {0\,;\,2} \right]\) đạt giá trị nhỏ nhất. Khi đó giá trị của tham số m bằng
Tập hợp các giá trị thực của m để hàm số \(y = \frac{{3x - 1 - 2m}}{{x - m}}\) nghịch biến trên khoảng \(\left( {5\,;\, + \infty } \right)\) là
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, \(AB = BC = 3a\sqrt 2 ,\widehat {SAB} = \widehat {SCB} = {90^0}\). Biết khoảng cách từ A đến mặt phẳng (SBC) bằng \(2a\sqrt 3 \). Tính thể tích mặt cầu ngoại tiếp hình chóp S.ABC.