Lời giải của giáo viên
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(y = f\left( x \right)\) liên tục trên R và có đồ thị như hình bên. Phương trình \(f\left( x \right) = \pi \) có bao nhiêu nghiệm thực phân biệt?
Hàm số \(y = - \frac{1}{4}{x^4} + 2{x^2} + 2\) đồng biến trên khoảng nào dưới đây?
Cho hàm số \(y = a{x^3} + b{x^2} + cx + d\) có đồ thị như hình vẽ. Tìm mệnh đề đúng.
Từ các chữ số 1, 2, 3, 4, 5, 6. Có thể lập được bao nhiêu số có 3 chữ số khác nhau?
Hàm số \(y = - \frac{1}{4}{x^4} - 2{x^2} + 2\) có bao nhiêu điểm cực trị?
Hàm số \(y = \frac{x}{{{x^2} + 1}}\) có giá trị lớn nhất là M, giá trị nhỏ nhất là m. Tính giá trị biểu thức \(P = {M^2} + {m^2}\).
Tìm m để hàm số \(y = \frac{1}{{\sqrt {x - m} }} + \sqrt { - x + 2m + 6} \) xác định trên (-1;0):
Cho hàm số \(y=f(x)\) có đạo hàm trên R và có đồ thị như hình vẽ dưới đây. Nhận xét nào đúng về hàm số \(g\left( x \right) = {f^2}\left( x \right)\)?
Số điểm biểu diễn tập nghiệm của phương trình \({\sin ^3}x - 3{\sin ^2}x + 2\sin x = 0\) trên đường tròn lượng giác là:
Trong mặt phẳng Oxy, cho đường thẳng d có phương trình \(x+y-1=0\) và đường tròn \(\left( C \right):{\left( {x - 3} \right)^2} + {\left( {y - 1} \right)^2} = 1\). Ảnh của đường thẳng d qua phép tịnh tiến theo véc tơ \(\overrightarrow v = \left( {4;0} \right)\) cắt đường tròn (C) tại hai điểm \(A\left( {{x_1};{y_1}} \right)\) và \(B\left( {{x_2};{y_2}} \right)\). Giá trị \({x_1} + {x_2}\) bằng:
Tìm tọa độ tâm I và bán kính R của đường tròn (C): \({x^2} + {y^2} - 2x + 4y + 1 = 0\).
Cho hàm số \(y=f(x)\) có bảng biến thiên như hình vẽ bên. Mệnh đề nào dưới đây đúng?
Cho một đa giác lồi (H) có 10 cạnh. Hỏi có bao nhiêu tam giác mà ba đỉnh của nó là ba đỉnh của (H), nhưng ba cạnh không phải ba cạnh của (H)?
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A (2;1), đường cao BH có phương trình \(x - 3y - 7 = 0\) và trung tuyến CM có phương trình \(x+y+1=0\). Tìm tọa độ đỉnh C?
Cho hàm số \(y=f(x)\) có đạo hàm \(f'(x)\). Hàm số \(y=f'(x)\) liên tục trên tập số thực và có đồ thị như hình vẽ. Biết \(f\left( { - 1} \right) = \frac{{13}}{4},\,f\left( 2 \right) = 6\). Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(g\left( x \right) = {f^3}\left( x \right) - 3f\left( x \right)\) trên \([-1;2]\) bằng: