Trên khoảng \((0;+\infty)\), họ nguyên hàm của hàm số \(f(x)=x^{\frac{3}{2}}\) là:
A. \(\displaystyle\int f(x) {\rm d} x=\dfrac{3}{2} x^{\frac{1}{2}}+C\)
B. \(\displaystyle\int f(x) {\rm d} x=\dfrac{5}{2} x^{\frac{2}{5}}+C\)
C. \(\displaystyle\int f(x) {\rm d} x=\dfrac{2}{5} x^{\frac{5}{2}}+C\)
D. \(\displaystyle\int f(x) {\rm d} x=\dfrac{2}{3} x^{\frac{1}{2}}+C\)
Lời giải của giáo viên
Ta có: \(\displaystyle\int f(x) {\rm d} x=\displaystyle\int x^{\frac{3}{2}} {\rm d} x=\dfrac{2}{5} x^{\frac{5}{2}}+C\).
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(y=f(x)\) có đạo hàm là \(f'(x)=x^2+10 x, \forall x \in \mathbb{R}\). Có bao nhiêu giá trị nguyên của tham số m để hàm số \(y=f\left(x^4-8 x^2+m\right)\) có đúng 9 điểm cực trị?
Cho hàm số f(x) có bảng xét dấu của đạo hàm như sau:
Số điểm cực trị của hàm số đã cho là
Gọi \(S\) là tập hợp tất cả các số phức \(z\) sao cho số phức \(w=\dfrac{1}{|z|-z}\) có phần thực bằng \(\dfrac{1}{8}\). Xét các số phức \(z_1, z_2 \in S\) thỏa mãn \(\left|z_1-z_2\right|=2\), giá trị lớn nhất của \(P=\left|z_1-5 i\right|^2-\left|z_2-5 i\right|^2\) bằng
Thể tích V của khối cầu bán kính r được tính theo công thức nào dưới đây?
Trong không gian Oxyz, cho ba điểm A(2;-2; 3), B(1; 3; 4), C(3;-1; 5). Đường thẳng đi qua A và song song với BC có phương trình là
Cho khối chóp đều S.ABCD có AC=4a, hai mặt phẳng (SAB) và (SCD) cùng vuông góc với nhau. Thể tích khối chóp đã cho bằng
Với n là số nguyên dương, công thức nào dưới đây đúng?
Cho khối lăng trụ có diện tích đáy B và chiều cao h. Thể tích V của khối lăng trụ đã cho được tính theo công thức nào dưới đây?
Cho hàm số y=f(x) có đạo hàm là \(f'(x)=12 x^2+2, \forall x \in \mathbb{R}\) và f(1)=3. Biết F(x) là nguyên hàm của f(x) thỏa mãn F(0)=2, khi đó F(1) bằng
Trong không gian Oxyz, cho mặt cầu \((S):(x-4)^2+(y+3)^2+(z+6)^2=50\) và đường thẳng \(d: \dfrac{x}{2}=\dfrac{y+2}{4}=\dfrac{z-3}{-1}\). Có bao nhiêu điểm M thuộc trục hoành, với hoành độ là số nguyên, mà từ M kẻ được đến (S) hai tiếp tuyến cùng vuông góc với d?
Cho hàm số \(y=\mathrm{ax}^4+b x^2+c(a, b, c \in \mathbb{R})\) có đồ thị là đường cong trong hình bên.
Giá trị cực đại của hàm số đã cho bằng.
Nếu \(\displaystyle\int_2^5 f(x) \mathrm{d} x=2\) thì \(\displaystyle\int_2^5 3 f(x) \mathrm{d} x\) bằng
Cho số phức z thỏa mãn \(i\overline{z}=5+2i\). Phần ảo của z bằng