Trong hệ tọa độ \(Oxy\), parabol \(y=\frac{{{x}^{2}}}{2}\) chia đường tròn tâm \(O\) (\(O\) là gốc tọa độ) bán kính \(r=2\sqrt{2}\) thành 2 phần, diện tích phần nhỏ bằng:
A. \(2\pi +\frac{3}{4}\).
B. \(2\pi +\frac{4}{3}\).
C. \(2\pi -\frac{4}{3}\).
D. \(\frac{4}{3}\).
Lời giải của giáo viên
Phương trình đường tròn: \({{x}^{2}}+{{y}^{2}}=8\).
Ta có: \({{x}^{2}}+{{y}^{2}}=8\Leftrightarrow y=\pm \sqrt{8-{{x}^{2}}}\).
Parabol chia hình tròn giới hạn bởi đường tròn \(\left( C \right)\) thành hai phần. Gọi \(S\) là phần diện tích giới hạn bởi \(y=\sqrt{8-{{x}^{2}}}\) và parapol \(\left( P \right):y=\frac{{{x}^{2}}}{2}\).
Phương trình hoành độ giao điểm của \(\left( C \right)\) và \(\left( P \right)\) \(\sqrt{8-{{x}^{2}}}=\frac{{{x}^{2}}}{2}\Leftrightarrow \left[ \begin{align} & x=-2 \\ & x=2 \\ \end{align} \right.\)
Khi đó ta tính được \(S\) như sau.
\(S=\int\limits_{-2}^{2}{\left( \sqrt{8-{{x}^{2}}}-\frac{{{x}^{2}}}{2} \right)\text{d}x}=\int\limits_{-2}^{2}{\sqrt{8-{{x}^{2}}}\text{d}x}-\int\limits_{-2}^{2}{\frac{{{x}^{2}}}{2}\text{d}x}\).
Tính \(I=\int\limits_{-2}^{2}{\sqrt{8-{{x}^{2}}}\text{d}x}\).
Đặt \(t=2\sqrt{2}\sin x\Rightarrow \text{d}t=2\sqrt{2}\cos x.\text{d}x\), ta có.
\(I=\int\limits_{-\frac{\pi }{4}}^{\frac{\pi }{4}}{\left( 8\sqrt{1-{{\sin }^{2}}t}.\cos t \right)\text{d}t}=4\int\limits_{-\frac{\pi }{4}}^{\frac{\pi }{4}}{\left( 1+\cos 2t \right)\text{d}t}=\left. \left( 4t+2\sin 2t \right) \right|_{-\frac{\pi }{4}}^{\frac{\pi }{4}}=2\pi +4\).
Ta có: \(\int\limits_{-2}^{2}{\frac{{{x}^{2}}}{2}\text{d}x=\left. \frac{{{x}^{3}}}{6} \right|_{-2}^{2}=\frac{8}{3}}\).
Suy ra \(S=2\pi +\frac{4}{3}\).
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hình trụ có bán kính đáy \(r=5\left( \text{cm} \right)\) và khoảng cách giữa hai đáy bằng \(7\left( \text{cm} \right)\). Diện tích xung quanh của hình trụ là
Giải phương trình \({{\log }_{\frac{1}{2}}}\left( x-1 \right)=-2\).
Trong không gian \(Oxyz\), cho \(A\left( 1;1;-3 \right), B\left( 3;-1;1 \right)\). Gọi M là trung điểm của AB, đoạn OM có độ dài bằng
Gieo một con xúc sắc cân đối và đồng chất hai lần. Xác suất để cả hai lần xuất hiện mặt sáu chấm là
Cho số phức \(\overline{z}=3-2i\). Tìm phần thực và phần ảo của \(z\).
Cho khối lăng trụ \(ABC.{A}'{B}'{C}'\) có thể tích bằng 1. Gọi M,N lần lượt là trung điểm của các đoạn thẳng \(A{A}'\) và \(B{B}'\). Đường thẳng CM cắt đường thẳng \({C}'{A}'\) tại P, đường thẳng CN cắt đường thẳng \({C}'{B}'\) tại Q. Thể tích khối đa diện lồi \({A}'MP{B}'NQ\) bằng
Cho khối lăng trụ đứng \(ABC.{A}'{B}'{C}'\) có \(C{C}'=2a\), đáy \(ABC\) là tam giác vuông cân tại \(B\) và \(AC=a\sqrt{2}\). Tính thể tích \(V\) của khối lăng trụ đã cho.
Đường cong trong hình bên là đồ thị của một trong bốn hàm số nào sau đây?
Trong không gian với hệ trục Oxyz , cho mặt cầu \(\left( S \right):{{\left( x-1 \right)}^{2}}+{{\left( y-1 \right)}^{2}}+{{\left( z-1 \right)}^{2}}=12\) và mặt phẳng \(\left( P \right):x-2y+2z+11=0\) . Xét điểm M di động trên \(\left( P \right)\) , các điểm A,B,C phân biệt di động trên \(\left( S \right)\) sao cho AM,BM,CM là các tiếp tuyến của \(\left( S \right)\) . Mặt phẳng \(\left( ABC \right)\) luôn đi qua điểm cố định nào dưới đây ?
Đổi biến \(x=4\sin t\) của tích phân \(I=\int\limits_{0}^{\sqrt{8}}{\sqrt{16-{{x}^{2}}}}dx\) ta được:
Cho M là tập hợp các số phức \(z\) thỏa mãn \(\left| 2z-i \right|=\left| 2+iz \right|\). Gọi \({{z}_{1}},{{z}_{2}}\) là hai số phức thuộc tập hợp M sao cho \(\left| {{z}_{1}}-{{z}_{2}} \right|=1\). Tính giá trị của biểu thức \(P=\left| {{z}_{1}}+{{z}_{2}} \right|\).
Cho hàm số \(f\left( x \right)\) có đạo hàm \({f}'\left( x \right)={{\left( x+1 \right)}^{2}}{{\left( x-1 \right)}^{3}}\left( 2-x \right).\) Hàm số \(f\left( x \right)\) đồng biến trên khoảng nào, trong các khoảng dưới đây?
Có bao nhiêu số tự nhiên a sao cho tồn tại số thực \(x\) thoả\({{2021}^{{{x}^{3}}-{{a}^{3\log \left( x+1 \right)}}}}\left( {{x}^{3}}+2020 \right)={{a}^{3\log \left( x+1 \right)}}+2020\)
Trong không gian Oxyz, cho các điểm \(A\left( 2\,;\,-1\,;\,0 \right), B\left( 1\,;\,2\,;\,1 \right), C\left( 3\,;\,-2\,;\,0 \right)\) và \(D\left( 1\,;\,1\,;\,-3 \right)\). Đường thẳng đi qua D và vuông góc với mặt phẳng \(\left( ABC \right)\) có phương trình là
Trong không gian với hệ tọa độ \(Oxyz\), viết phương trình mặt phẳng đi qua ba điểm \(A\left( 1;1;4 \right)\), \(B\left( 2;7;9 \right)\), \(C\left( 0;9;13 \right)\).