Trong không gian Oxyz, cho các mặt phẳng \(\left( P \right):x-y+2z+1=0, \left( Q \right):2x+y+z-1=0\). Gọi \(\left( S \right)\) là mặt cầu có tâm thuộc trục hoành, đồng thời \(\left( S \right)\) cắt mặt phẳng \(\left( P \right)\) theo giao tuyến là một đường tròn có bán kính 2 và \(\left( S \right)\) cắt mặt phẳng \(\left( Q \right)\) theo giao tuyến là một đường tròn có bán kính r. Xác định r sao cho chỉ có đúng một mặt cầu \(\left( S \right)\) thỏa mãn yêu cầu.
A. \(r = \sqrt 3 \)
B. \(r = \sqrt 2\)
C. \(r = \sqrt {\frac{3}{2}} \)
D. \(r = \frac{{3\sqrt 2 }}{2}\)
Lời giải của giáo viên
* Gọi I là tâm của mặt cầu \(\left( S \right)\). Do \(I\in Ox\) nên ta có \(I\left( a;0;0 \right)\).
* Do \(\left( S \right)\) cắt mặt phẳng \(\left( P \right)\) theo giao tuyến là một đường tròn có bán kính 2 nên ta có:
\(4={{R}^{2}}-{{\left[ d\left( I;\left( P \right) \right) \right]}^{2}}\Leftrightarrow 4={{R}^{2}}-\frac{{{\left( a+1 \right)}^{2}}}{6}\Rightarrow {{R}^{2}}=4+\frac{{{\left( a+1 \right)}^{2}}}{6}\text{ }\left( 1 \right)\)
* Do \(\left( S \right)\) cắt mặt phẳng \(\left( Q \right)\) theo giao tuyến là một đường tròn có bán kính r nên ta có:
\({{r}^{2}}={{R}^{2}}-{{\left[ d\left( I;\left( P \right) \right) \right]}^{2}}\Leftrightarrow {{r}^{2}}={{R}^{2}}-\frac{{{\left( 2a-1 \right)}^{2}}}{6}\text{ }\left( 2 \right)\)
* Từ \(\left( 1 \right)\) và \(\left( 2 \right)\) ta có:
\({{r}^{2}}=4+\frac{{{\left( a+1 \right)}^{2}}}{6}-\frac{{{\left( 2a-1 \right)}^{2}}}{6}\Leftrightarrow -3{{a}^{2}}+6a+24-6{{r}^{2}}=0\Leftrightarrow -{{a}^{2}}+2a+8-2{{r}^{2}}=0\text{ }\left( 3 \right)\)
* Để có duy nhất một mặt cầu \(\left( S \right)\) thỏa mãn yêu cầu điều kiện là phương trình \(\left( 3 \right)\) có duy nhất một nghiệm a với r>0 nên điều kiện là:
\({\Delta }'=9-2{{r}^{2}}=0\Leftrightarrow r=\frac{3\sqrt{2}}{2}\).
CÂU HỎI CÙNG CHỦ ĐỀ
Cho số phức z thỏa mãn \(\left| z \right|=1\). Tìm giá trị lớn nhất của biểu thức \(A=\left| 1+\frac{5i}{2} \right|\)
Với a là số thực dương tùy ý, \(\sqrt {{a^5}} \) bằng
Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (P):2x+y-z-1=0 và (Q):x-2y-5=0. Khi đó giao tuyến của (P) và (Q) có một vectơ chỉ phương là
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):x-2y+z-5=0. Điểm nào dưới đây thuộc (P)?
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành. Gọi \(d\) là giao tuyến của hai mặt phẳng \(\left( {SAD} \right)\) và \(\left( {SBC} \right)\). Khẳng định nào sau đây là đúng?
Trong không gian với hệ trục tọa độ \(\text{Oxyz}\), cho ba điểm A(-1;0;0) , B(0;-2;0) và C(0;0;3) . Mặt phẳng đi qua ba điểm A,B,C có phương trình là
Cho hình chóp S. ABCD có đáy ABCD là hình vuông cạnh a, \(SA \bot \left( {ABCD} \right)\), SD = 2a. Gọi \(\alpha \) là góc giữa SC và mp (ABCD). Chọn khẳng định đúng trong các khẳng định sau ?
Một hội nghị bàn tròn có các phái đoàn gồm 3 người Anh, 5 người Pháp, 7 người Mỹ. Hỏi có bao nhiêu cách xếp chỗ ngồi cho các thành viên, sao cho những người có cùng quốc tịch thì ngồi gần nhau:
Tính thể tích khối hộp chữ nhật có các kích thước b, 2b, 3b
Nghiệm của phương trình \({\log _3}\left( {x - 4} \right) = 2\) là
Trong một hộp bút gồm có 8 cây bút bi, 6 cây bút chì và 10 cây bút màu. Hỏi có bao nhiêu cách chọn ra một cây bút từ hộp bút đó?
Cho a, b là hai số dương bất kì. Mệnh đề nào sau đây là đúng?
Nếu \(\int\limits_1^3 {f(x)dx} = 8\) thì \(\int\limits_1^3 {\left[ {\frac{1}{2}f\left( x \right) + 1} \right]dx} \) bằng
Tiệm cận ngang của đồ thị hàm số \(y = \frac{{3x + 2}}{{x - 1}}\) là