Trong không gian \(Oxyz\), cho điểm \(A\left( { - 4;0;1} \right)\) và mặt phẳng \(\left( P \right)\): \(x - 2y - z + 4 = 0\). Mặt phẳng \(\left( Q \right)\) đi qua điểm \(A\) và song song với mặt phẳng \(\left( P \right)\) có phương trình là
A. \(\left( Q \right):x - 2y - z - 5 = 0\)
B. \(\left( Q \right):x - 2y + z - 5 = 0\)
C. \(\left( Q \right):x - 2y + z + 5 = 0\)
D. \(\left( Q \right):x - 2y - z + 5 = 0\)
Lời giải của giáo viên
\(\left( P \right)\): \(x - 2y - z + 4 = 0\) có VTPT \(\overrightarrow {{n_P}} = \left( {1; - 2; - 1} \right)\) nên \(\left( Q \right)//\left( P \right) \Rightarrow \overrightarrow {{n_Q}} = \left( {1; - 2; - 1} \right)\).
\(\left( Q \right)\) đi qua \(A\left( { - 4;0;1} \right)\) và nhận \(\overrightarrow {{n_Q}} = \left( {1; - 2; - 1} \right)\) làm VTPT nên \(\left( Q \right)\) có phương trình là: \(1\left( {x + 4} \right) - 2\left( {y - 0} \right) - 1\left( {z - 1} \right) = 0 \Leftrightarrow x - 2y - z + 5 = 0\).
Chọn D.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hình chóp \(S.ABC\) có \(SA \bot \left( {ABC} \right),\) tam giác \(ABC\) vuông ở \(B.\) \(AH\) là đường cao của \(\Delta SAB.\) Tìm khẳng định sai.
Thể tích khối lăng trụ có diện tích đáy là \(B\) và chiều cao \(h\) được tính bởi công thức
Trong không gian \(Oxyz\), phương trình của mặt phẳng \(\left( P \right)\) đi qua điểm \(B\left( {2;1; - 3} \right)\), đồng thời vuông góc với hai mặt phẳng \(\left( Q \right):x + y + 3z = 0,\left( R \right):2x - y + z = 0\) là:
Tiếp tuyến với đồ thị hàm số \(y = {x^3} + 3{x^2} - 2\) tại điểm có hoành độ bằng \( - 3\) có phương trình là
Cho hình chóp \(S.ABCD\) đều có \(AB = 2\) và \(SA = 3\sqrt 2 .\) Bán kính của mặt cầu ngoại tiếp hình chóp đã cho bằng
Cho lăng trụ đều \(ABC.EFH\) có tất cả các cạnh bằng \(a\). Gọi \(S\) là điểm đối xứng của \(A\) qua \(BH\). Thể tích khối đa diện \(ABCSFH\) bằng
Gọi \(S\) là tập hợp các giá trị thực của tham số \(m\) sao cho phương trình \({x^9} + 3{x^3} - 9x = m + 3\sqrt[3]{{9x + m}}\) có đúng hai nghiệm thực. Tính tổng các phần tử của \(S\).
Trong không gian \(Oxyz,\) cho mặt phẳng \(\left( P \right):2x - y + z + 4 = 0.\) Khi đó mặt phẳng \(\left( P \right)\) có một véc tơ pháp tuyến là
Tập hợp tất cả các giá trị của tham số thực \(m\) để hàm số \(y = \ln \left( {{x^2} + 1} \right) - mx + 1\) đồng biến trên \(\mathbb{R}.\)
Trong không gian với hệ tọa độ \(Oxyz,\) cho mặt phẳng \(\left( P \right):x - 2y + 2z - 2 = 0\) và điểm \(I\left( { - 1;2; - 1} \right)\). Viết phương trình mặt cầu \(\left( S \right)\) có tâm \(I\) và cắt mặt phẳng \(\left( P \right)\) theo giao tuyến là đường tròn có bán kính bằng \(5.\)
Hình nón có diện tích xung quanh bằng \(24\pi \) và bán kính đường tròn đáy bằng \(3\). Đường sinh của hình nón có độ dài bằng:
Tìm giá trị cực tiểu \({y_{CT}}\) của hàm số \(y = {x^3} - 3{x^2}\)
Cho \(\int\limits_1^2 {f\left( x \right)dx = 1} \) và \(\int\limits_2^3 {f\left( x \right)dx = - 2.} \) Giá trị của \(\int\limits_1^3 {f\left( x \right)dx} \) bằng
Cho phương trình \({2^{2x}} - {5.2^x} + 6 = 0\) có hai nghiệm \({x_1},{x_2}\). Tính \(P = {x_1}.{x_2}\).
Cho một hình trụ có chiều cao bằng \(2\) và bán kính đáy bằng \(3\). Thể tích khối trụ đã cho bằng