Trong không gian Oxyz, cho hai điểm \(C\left( -1;2;11 \right),H(-1;2;-1)\), hình nón \(\left( N \right)\) có đường cao CH=h và bán kính đáy là \(R=3\sqrt{2}\). Gọi M là điểm trên đoạn CH,\(\left( C \right)\) là thiết diện của mặt phẳng \(\left( P \right)\) vuông góc với trục CH tại M của hình nón \(\left( N \right)\,.\) Gọi \(\left( {{N}'} \right)\,\) là khối nón có đỉnh H đáy là \(\left( C \right)\). Khi thể tích khối nón \(\left( {{N}'} \right)\,\) lớn nhất thì mặt cầu ngoại tiếp nón \(\left( {{N}'} \right)\,\) có tọa độ tâm \(I\left( a;b,c \right),\) bán kính là d. Giá trị a+b+c+d bằng
A. 1
B. 3
C. 6
D. -6
Lời giải của giáo viên
Đặt HM=x, 0<x<h. Gọi I,R,r lần lượt là tâm và bán kính đường tròn đáy của nón (N), bán kính đường tròn \(\left( C \right).\) Khi đó ta có CH=h=12 là chiều cao của \((N),R=3\sqrt{2}\).
Khi đó \(C,\,I,\,H\) thẳng hàng (I nằm giữa C,H).
Do tam giác \(\Delta CEM\backsim \Delta CQH\) nên \(\frac{EM}{QH}=\frac{CM}{CH}\Leftrightarrow EM=\frac{QH.CM}{CH}\Leftrightarrow r=EM=FM=\frac{R\left( h-x \right)}{h}\)
Thể tích của khối nón đỉnh O đáy là \(\left( C \right)\) là
\(V=\frac{1}{3}\pi E{{M}^{2}}.HM=\frac{1}{3}\pi {{\left[ \frac{R\left( h-x \right)}{h} \right]}^{2}}x=\frac{1}{3}\pi \frac{{{R}^{2}}}{{{h}^{2}}}{{\left( h-x \right)}^{2}}x\).
Ta có Xét hàm số \(f\left( x \right)=\frac{1}{3}\pi \frac{{{R}^{2}}}{{{h}^{2}}}{{\left( h-x \right)}^{2}}x, \left( 0<x<h \right)\)
\({f}'\left( x \right)=\frac{1}{3}\pi \frac{{{R}^{2}}}{{{h}^{2}}}\left( h-x \right)\left( h-3x \right); {f}'\left( x \right)=0\Leftrightarrow \frac{1}{3}\pi \frac{{{R}^{2}}}{{{h}^{2}}}\left( h-x \right)\left( h-3x \right)\Leftrightarrow x=\frac{h}{3}\).
Lập bảng biến thiên ta có
Từ bảng biến ta có thể tích khối nón đỉnh O đáy là \(\left( C \right)\) lớn nhất khi \(x=\frac{h}{3}\)
Khi đó \(HM=x=\frac{h}{3}=4, r=\frac{R.CM}{h}=\frac{R.(h-x)}{h}=2\sqrt{2}=MF\)
Gọi P là giao điểm của HM với mặt cầu ngoại tiếp nón \(\left( {{N}'} \right)\,.\) Ta có \(\Delta HFP\) vuông tại F\(\Rightarrow H{{F}^{2}}=HM.HP\)
\(\Leftrightarrow H{{M}^{2}}+M{{F}^{2}}=HM.HP\Leftrightarrow 16+{{\left( 2\sqrt{2} \right)}^{2}}=4.HP\Rightarrow HP=6\)
\(\Rightarrow d=HI=3=\frac{1}{4}HC\Rightarrow \overrightarrow{HI}=\frac{1}{4}\overrightarrow{HC}\Rightarrow I(-1;2;2)\).
Vậy a+b+c+d=6
CÂU HỎI CÙNG CHỦ ĐỀ
Có bao nhiêu số tự nhiên có ba chữ số đôi một khác nhau?
Trong một lớp học gồm 15 học sinh nam và 10 học sinh nữ. Giáo viên gọi ngẫu nhiên 4 học sinh lên giải bài tập. Tính xác suất để 4 học sinh được gọi đó có cả nam và nữ?
Cho một khối trụ có độ dài đường sinh là \(l=6~\text{cm}\) và bán kính đường tròn đáy là \(r=5~\text{cm}\). Diện tích toàn phần của khối trụ là
Thể tích của khối hộp chữ nhật có ba kích thước 5; 7; 8 bằng
Cho hàm số \(f\left( x \right)\), đồ thị hàm số \(y={f}'\left( x \right)\) là đường cong trong hình bên. Giá trị nhỏ nhất của hàm số \(g\left( x \right)=f\left( \frac{x}{2} \right)\) trên đoạn \(\left[ -5;3 \right]\) bằng
Có bao nhiêu số tự nhiên y sao cho ứng với mỗi y có không quá 148 số nguyên $x$ thỏa mãn \(\frac{{{3}^{x+2}}-\frac{1}{3}}{y-\ln x}\ge 0\)?
Tích phân \(\int_{1}^{2}{x\left( x+2 \right)}~\text{d}x\) bằng
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu \(\left( S \right)\) có phương trình: \({{x}^{2}}+{{y}^{2}}+{{z}^{2}}-2x-4y+4z-7=0\). Xác định tọa độ tâm I và bán kính R của mặt cầu \(\left( S \right)\).
Với x>0, đạo hàm của hàm số \(y={{\log }_{2}}x\) là
Có bao nhiêu số phức z thỏa mãn \(\left| z \right|=\left| z+\bar{z} \right|=1\)?
Với a$ là số thực dương tùy ý, \({{\log }_{5}}\left( \frac{125}{a} \right)\) bằng
Trong không gian \(\text{Ox}yz\) cho điểm A thỏa mãn \(\overrightarrow{OA}=2\overrightarrow{i}+\overrightarrow{j}\) với \(\overrightarrow{i},\,\overrightarrow{j}\) là hai vectơ đơn vị trên hai trục Ox, Oy. Tọa độ điểm A là
Nghiệm của phương trình \({\log _2}\left( {x - 3} \right) = 3\) là: