Trong không gian Oxyz, cho mặt phẳng \(\left( P \right):x+y+z-3=0\) và đường thẳng
\(d:\frac{x}{1}=\frac{y+1}{2}=\frac{z-2}{-1}.\) Hình chiếu vuông góc của d trên \(\left( P \right)\) có phương trình là
A. \(\frac{{x + 1}}{{ - 1}} = \frac{{y + 1}}{{ - 4}} = \frac{{z + 1}}{5}.\)
B. \(\frac{{x - 1}}{3} = \frac{{y - 1}}{{ - 2}} = \frac{{z - 1}}{{ - 1}}.\)
C. \(\frac{{x - 1}}{1} = \frac{{y - 1}}{4} = \frac{{z - 1}}{{ - 5}}.\)
D. \(\frac{{x - 1}}{1} = \frac{{y - 4}}{1} = \frac{{z + 5}}{1}.\)
Lời giải của giáo viên
Phương trình của tham số của đường thẳng d là: \(\left\{ \begin{matrix} x=t \\ y=-1+2t \\ z=2-t \\ \end{matrix}. \right.\)
Gọi A là giao điểm của (P) và d. Khi đó tọa độ điểm A là nghiệm của hệ phương trình: \(\left\{ \begin{matrix} x=t \\ y=-1+2t \\ z=2-t \\ x+y+z-3=0 \\ \end{matrix} \right.\)
Suy ra \(A\left( 1;1;1 \right)\). Đường thẳng d có vec-tơ chỉ phương là \(\overrightarrow{{{u}_{d}}}=\left( 1;2;-1 \right)\), mặt phẳng (P) có vec-tơ pháp tuyến là \(\overrightarrow{{{n}_{\left( P \right)}}}=\left( 1;1;1 \right)\)
Gọi (Q) là mặt phẳng chứa đường thẳng d và vuông góc với (P). Khi đó (Q) có vec-tơ pháp tuyến \(\overrightarrow{{{n}_{Q}}}=\left[ \overrightarrow{{{u}_{d}}},\overrightarrow{{{n}_{\left( P \right)}}} \right]=\left( 3;-2;-1 \right)\)
Đường thẳng \(\Delta \) là hình chiếu vuông góc của d lên (P) chính là giao tuyến của (P) và (Q). Suy ra vec-tơ chỉ phương của \(\Delta \) là \(\overrightarrow{u}=\left[ \overrightarrow{{{n}_{(P)}}},\overrightarrow{{{n}_{(Q)}}} \right]=\left( 1;4;-5 \right).\)
Vậy hình chiếu vuông góc của d trên (P) có phương trình là \(\frac{x-1}{1}=\frac{y-1}{4}=\frac{z-1}{-5}.\)
CÂU HỎI CÙNG CHỦ ĐỀ
Một vật chuyển động với vận tốc \(v\left( t \right)\left( m/s \right)\) có gia tốc \(a\left( t \right)=3{{t}^{2}}+t\left( m/{{s}^{2}} \right)\). Vận tốc ban đầu của vật là \(2\left( m/s \right)\). Hỏi vận tốc của vật sau 2s
Có bao nhiêu số nguyên dương y để tập nghiệm của bất phương trình \(\left( {{\log }_{2}}x-\sqrt{2} \right)\left( {{\log }_{2}}x-y \right)<0\) chứa tối đa 1000 số nguyên.
Rút gọn biểu thức \(P={{x}^{\frac{1}{5}}}.\sqrt[3]{x}\) với x>0.
Họ nguyên hàm của hàm số \(f\left( x \right) = x + \sin 2x\) là.
Cho hàm số \(y=h\left( x \right)\) có bảng biến thiên như sau:
Hàm số đạt cực đại tại điểm
Một khối trụ có thể tích bằng \(6\pi \). Nếu giữ nguyên chiều cao và tăng bán kính đáy của khối trụ đó gấp 3 lần thì thể tích của khối trụ mới bằng bao nhiêu?
Tính tích phân \(\int\limits_2^6 {\frac{1}{x}dx} \) bằng.
Đồ thị \(\left( C \right)\) của hàm số \(y=\frac{\left( a+1 \right)x+2}{x-b+1}\) nhận gốc tọa độ O làm tâm đối xứng thì tổng a+b là
Cho hàm số \(y=f\left( x \right)\) nhận giá trị dương và có đạo hàm \({f}'\left( x \right)\) liên tục trên \(\mathbb{R}\) thỏa mãn \(\int\limits_{0}^{x}{\left[ {{f}^{2}}\left( t \right)+{{\left( {f}'\left( t \right) \right)}^{2}} \right]}dt={{\left( f\left( x \right) \right)}^{2}}-2018\). Tính \(f\left( 1 \right)\)
Cho \(I=\int\limits_{0}^{2}{f(x)d}x=3.\) Khi đó \(J=\int\limits_{0}^{2}{\left[ 4f\left( x \right)-3 \right]dx}\) bằng:
Cho hàm số y=f(x) có bảng biến thiên như hình sau
Hàm số y=f(x) đồng biến trên khoảng nào dưới đây?