Trong không gian với hệ toạ độ Oxyz, cho hai đường thẳng \({{\Delta }_{1}}:\,\frac{x}{1}=\frac{y-4}{2}=\frac{z-1}{3}\) và \({{\Delta }_{2}}:\,\frac{x+2}{-1}=\frac{y}{-2}=\frac{z-1}{3}\) cắt nhau và cùng nằm trong mặt phẳng \(\left( P \right)\). Đường phân giác d của góc nhọn tạo bởi \({{\Delta }_{1}}, {{\Delta }_{2}}\) và nằm trong mặt phẳng \(\left( P \right)\) có một véctơ chỉ phương là
A. \(\overrightarrow u = \left( {1\,;\,2\,;\,3} \right)\)
B. \(\overrightarrow u = \left( {0\,;\,0\,;\, - 1} \right)\)
C. \(\overrightarrow u = \left( {1\,;\,0\,;\,0} \right)\)
D. \(\overrightarrow u = \left( {1\,;\, - 2\,;\, - 3} \right)\)
Lời giải của giáo viên
Ta có
\({\Delta _1}:\,\frac{x}{1} = \frac{{y - 4}}{2} = \frac{{z - 1}}{3} \Leftrightarrow \left\{ \begin{array}{l} x = a\\ y = 4 + 2a\\ z = 1 + 3a \end{array} \right.\,\,\,\left( {a \in R} \right).\)
\({\Delta _2}:\,\frac{{x + 2}}{{ - 1}} = \frac{y}{{ - 2}} = \frac{{z - 1}}{3} \Rightarrow \left\{ \begin{array}{l} x = - 2 - b\\ y = - 2b\\ z = 1 + 3b \end{array} \right.\,\left( {b \in R} \right)\,.\)
Gọi M là giao điểm của hai đường thẳng vậy tọa độ M thỏa mãn hệ phương trình :
\(\left\{ \begin{array}{l} a = - 2 - b\\ 4 + 2{\rm{a}} = - 2b\\ 1 + 3{\rm{a}} = 1 + 3b \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} a = - 1\\ b = - 1 \end{array} \right.\, \Rightarrow M\left( { - 1\,;2\,;\, - 2} \right).\)
Trên \({\Delta _1}\) lấy điểm \(A\left( {1;6\,;\,4} \right) \Rightarrow \overrightarrow {MA} = \left( {2\,;\,4\,;\,6} \right)\), trên \({\Delta _2}\) lấy điểm \(B\left( { - 2 - b\,; - 2b\,;\,1 + 3b} \right)\) thỏa mãn : \(MA = MB \Leftrightarrow M{A^2} = M{B^2} \Leftrightarrow 56 = {\left( { - 1 - b} \right)^2} + {\left( { - 2b - 2} \right)^2} + {\left( {3 + 3b} \right)^2}\)
\( \Leftrightarrow 14{b^2} + 28b - 42 = 0 \Leftrightarrow {b^2} + 2b - 3 = 0 \Leftrightarrow \left[ \begin{array}{l} b = 1\\ b = - 3 \end{array} \right. \Rightarrow \left[ \begin{array}{l} B\left( { - 3\,; - 2\,;\,4} \right)\\ B\left( {1\,;6\,;\, - 8} \right) \end{array} \right. \Rightarrow \left[ \begin{array}{l} \overrightarrow {MB} \left( { - 2\,; - 4\,;\,6} \right)\\ \overrightarrow {MB} \left( {2\,;4\,;\, - 6} \right) \end{array} \right.\)
Xét \(\overrightarrow {MA} .\overrightarrow {MB} \), vì d là đường phân giác góc nhọn của 2 đường thẳng nên \(\overrightarrow {MA} .\overrightarrow {MB} \, > 0\) vậy tọa độ \(B\left( { - 3\,; - 2\,;\,4} \right)\) thỏa mãn.
Vậy véctơ chỉ phương của đường thẳng thỏa mãn : \(\overrightarrow u = \overrightarrow {MA} + \overrightarrow {MB} = \left( {0 ;\,0\,;\,12} \right).\)
Vì \(\overrightarrow{u}\) là vectơ chỉ phương của đường thẳng d nên \(k\overrightarrow{u}\,\left( k\ne 0 \right)\) cũng là vectơ chỉ phương của đường thẳng d. Khi đó chọn \(k=\frac{-1}{12}\) véctơ chỉ phương của đường thẳng d có tọa độ là \(\overrightarrow{u}=\left( 0\,;\,0\,;\,-1 \right)\). Đáp án đúng là B
CÂU HỎI CÙNG CHỦ ĐỀ
Giá trị lớn nhất của hàm số \(y = \sqrt {4 - {x^2}} \) là
Phương trình trung tuyến AM của tam giác ABC với \(A(3;1;2),\,B(-3;2;5),C(1;6;-3)\) là
Hàm số nào dưới đây đồng biến trên khoảng \(\left( -\infty ;+\infty \right)\)?
Trong không gian Oxyz, cho hai điểm \(A\left( 0;1;2 \right)\) và \(B\left( \sqrt{3};1;3 \right)\) thoả mãn \(AB\bot BC,AB\bot AD, AD\bot BC\). Gọi (S) là mặt cầu có đường kính AB, đường thẳng CD di động và luôn tiếp xúc với mặt cầu (S). Gọi \(E\in AB,F\in CD\) và EF là đoạn vuông góc chung của AB và CD. Biết rằng đường thẳng \((\Delta )\bot EF;(\Delta )\bot AB\) và \(d\left( A;\left( \Delta \right) \right)=\sqrt{3}\) . Khoảng cách giữa \(\Delta \) và CD lớn nhất bằng
Họ tất cả các nguyên hàm của hàm số \(f\left( x \right)=4x+\sin x\) là
Tích phân \(\int\limits_1^2 {2{x^4}} {\rm{d}}x\) bằng
Nếu \({\log _7}x = 8{\log _7}a{b^2} - 2{\log _7}{a^3}b\,\,(a,b > 0)\) thì \(x\) bằng :
Tính môđun của số phức z biết \(\bar{z}=\left( 4-3i \right)\left( 1+i \right)\).
Trong không gian Oxyz, vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng đi qua hai điểm \(A\left( 0;4;3 \right)\) và \(B\left( 3;-2;0 \right)\)?
Cho hàm số \(f\left( x \right) = x + \sqrt {{x^2} + 1} \) biết \(\int\limits_0^1 {\frac{{f\left( x \right)}}{{f\left( { - x} \right)}}} {\rm{d}}x = a + b\sqrt c \) với \(a,\,b,\,c\) là các số hữu tỷ tối giãn . Tính P = a + b + c
Một lớp học có 25 học sinh nam và 17 học sinh nữ. Hỏi có bao nhiêu cách chọn ra một học sinh nam và một học sinh nữ trong lớp học này đi dự trại hè của trường?
Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình vẽ bên?
Điểm biểu diễn hình học của số phức z=2-3i là điểm nào trong các điểm sau đây?
Cho số phức z có điểm biểu diễn trong mặt phẳng tọa độ Oxy là điểm \(M\left( 3;-5 \right)\). Xác định số phức liên hợp \(\bar{z}\) của z.