Trong một đợt tổ chức cho học sinh tham gia dã ngoại ngoài trời. Để có thể có chỗ nghỉ ngơi trong quá trình tham quan dã ngoại, các bạn học sinh đã dựng trên mặt đất bằng phẳng 1 chiếc lều bằng bạt từ một tấm bạt hình chữ nhật có chiều dài là 12m và chiều rộng là 6m bằng cách: Gập đôi tấm bạt lại theo đoạn nối trung điểm hai cạnh là chiều rộng của tấm bạt sao cho hai mép chiều dài còn lại của tấm bạt sát đất và cách nhau x (m) (xem hình vẽ). Tìm x để khoảng không gian phía trong lều là lớn nhất?
A. \(x = 3\sqrt 3 \)
B. \(x = 3\sqrt 2 \)
C. x = 2
D. x = 4
Lời giải của giáo viên
CÂU HỎI CÙNG CHỦ ĐỀ
Mỗi đỉnh của một hình đa diện là đỉnh chung của ít nhất
Trong mặt phẳng với hệ tọa độ Oxy, cho hình thoi ABCD có tâm I(2; 1) vàAC = 2BD. Điểm \(M\left( {0;\frac{1}{3}} \right)\) thuộc đường thẳng AB, điểm N(0; 7) thuộc đường thẳng CD. Tìm tọa độ đỉnh B biết B có hoành độ dương.
Có bao nhiêu giá trị nguyên của tham số thực m thuộc khoảng \(( - 1000;1000)\) để hàm số \(y = 2{x^3} - 3(2m + 1){x^2} + 6m(m + 1)x + 1\) đồng biến trên khoảng \((2; + \infty )\)?
Giá trị nhỏ nhất của hàm số \(y = 1 + x + \frac{4}{x}\) trên đọan [-3; -1] bằng
Cho khối chóp S.ABCD có đáy là hình bình hành, gọi B’ và D’ theo thứ tự là trung điểm các cạnh SB, SD. Mặt phẳng (AB’D’) cắt cạnh SC tại C’. Tính tỷ số thể tích của hai khối đa diện được chia ra bởi mặt phẳng (AB’D’)
Số tiếp tuyến đi qua điểm A(1;-6) của đồ thị hàm số \(y = {x^3} - 3x + 1\) là:
Giới hạn sau \(\mathop {\lim }\limits_{x \to + \infty } \frac{{{x^2} - 2x + 1}}{{2{x^2} + x - 1}}\) có giá trị là:
Tập xác định của hàm số \(f(x) = \frac{{ - {x^2} + 2x}}{{{x^2} + 1}}\) là tập hợp nào sau đây?
Cho hình chóp đều S.ABC có cạnh đáy bằng a, góc giữa mặt bên và đáy bằng 600. Tính theo thể tích khối chóp S.ABC.
Hàm số \(y = a{x^4} + b{x^2} + c\) có đồ thị như hình vẽ dưới đây. Mệnh đề nào sau đây là đúng?
Trong các hàm số sau đây, hàm số nào là hàm số tuần hoàn?
Cho hàm số \(y = \frac{{x - 1}}{{x + 1}}\) có đồ thị (C). Với giá trị nào của m để đường thẳng y = -x + m cắt đồ thị (C) tại hai điểm phân biệt?
Cho hình lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác vuông tại B, BC=a, mặt phẳng (A’BC) tạo với đáy một góc 300 và tam giác A’BC có diện tích bằng \({a^2}\sqrt 3 \). Tính thể tích khối lăng trụ ABC.A’B’C’.