Trong năm 2019 diện tích rừng trồng mới của tỉnh A là 600 ha. Giả sử diện tích rừng trồng mới của tỉnh A mỗi năm liên tiếp đều tăng 6% so với diện tích rừng trồng mới của năm liền trước. Kể từ năm 2019, năm nào dưới đây là năm đầu tiên tỉnh A có diện tích rừng trồng mới trong năm đó đạt trên 1000 ha?
A. Năm 2028.
B. Năm 2027.
C. Năm 2046.
D. Năm 2047.
Lời giải của giáo viên
Diện tích rừng trồng mới của năm 2019 + 1 là \(600{\left( {1 + 6\% } \right)^1}\).
Diện tích rừng trồng mới của năm 2019+2 là \(600{\left( {1 + 6\% } \right)^2}\).
Diện tích rừng trồng mới của năm 2019+n là \(600{\left( {1 + 6\% } \right)^n}\).
Ta có \(600{\left( {1 + 6\% } \right)^n} > 1000 \Leftrightarrow {\left( {1 + 6\% } \right)^n} > \frac{5}{3} \Leftrightarrow n > {\log _{\left( {1 + 6\% } \right)}}\frac{5}{3} \approx 8,76\)
Như vậy kể từ năm 2019 thì năm 2028 là năm đầu tiên diện tích rừng trồng mới đạt trên 1000 ha.
CÂU HỎI CÙNG CHỦ ĐỀ
Với a, b là các số thực dương tùy ý và \(a\ne 1,\,\,{{\log }_{{{a}^{5}}}}b\) bằng
Trong không gian Oxyz, hình chiếu vuông góc của điểm A(3;2;1) trên trục Ox có tọa độ là
Cho hai số phức \({{z}_{1}}=3-2i\) và \({{z}_{2}}=2+i.\) Số phức \({{z}_{1}}+{{z}_{2}}\) bằng
Cho hàm số f(x) có bảng biến thiên sau:
Hàm số đã cho đồng biến trên khoảng nào dưới đây?
Trong không gian Oxyz, cho ba điểm A(3;0;0), B(0;1;0) và C(0;0;-2). Mặt phẳng (ABC) có phương trình là
Trong không gian Oxyz, cho mặt cầu \(\left( S \right):\,\,\,{{x}^{2}}+{{y}^{2}}+{{\left( z+2 \right)}^{2}}=9.\) Bán kính của (S) bằng
Xét các số thực không âm x và y thỏa mãn \(2x+y{{.4}^{x+y-1}}\ge 3.\) Giá trị nhỏ nhất của biểu thức \(P={{x}^{2}}+{{y}^{2}}+4x+6y\) bằng
Có bao nhiêu cách xếp 6 học sinh thành một hàng dọc?
Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?
Giá trị nhỏ nhất của hàm số \(f(x)={{x}^{3}}-24x\) trên đoạn [2;19] bằng
Cho cấp số nhân \(\left( {{u}_{n}} \right)\) với \({{u}_{1}}=3\) và công bội \(q=2.\) Giá trị của \({{u}_{2}}\) bằng
Cho hình lăng trụ đứng ABC.A’B’C’ có tất cả các cạnh bằng a. Gọi M là trung điểm của CC’ (tham khảo hình bên). Khoảng cách từ M đến mặt phẳng (A’BC) bằng
Trên mặt phẳng tọa độ, biết M(-3;1) là điểm biểu diễn số phức z. Phần thực của z bằng