Lời giải của giáo viên
Ta có:
\(lo{g_{{x^2} + {y^2} + 3}}\;\left( {2x + 2y\; + 5{\rm{ }}} \right)\; \ge \;1\;\)⇔ \(2x + 2y + 5{\rm{ }} \ge {x^2} + y{\;^2} + \;3\;\)⇔ \({x^2} + {y^2}\; - 2x - 2y\; - 2 \le \;0\left( 1 \right)\;\)
⇒ Tập hợp các cặp số thực ( x,y ) thỏa mãn \(lo{g_{{x^2} + {y^2} + 3}}\;\left( {2x + 2y\; + 5{\rm{ }}} \right)\; \ge \;1\;\) là hình tròn \(\left( {{C_1}} \right):{x^2} + {y^2}\; - 2x - 2y - 2 = 0\) (tính cả biên).
Xét \({x^2} + {y^2} + 4x + 6y + 13 - m = 0 \Leftrightarrow {\left( {x + 2} \right)^2} + {\left( {y + 3} \right)^2} = m.\;\)
TH1: \(m = 0 \Rightarrow \left\{ \begin{array}{l} x = - 2\\ y\; = - 3\; \end{array} \right.\), không thỏa mãn (1).
TH2: m >0 , khi đó tập hợp các cặp số thực ( x; y ) thỏa mãn \({x^2} + {y^2} + 4x + 6y + 13 - m = 0\) là đường tròn \(\left( {{C_2}} \right):{x^2} + {y^2}\; + 4x + 6y + 13 - m = 0.\;\)
Để tồn tại duy nhất cặp số thực ( x;y ) thỏa mãn yêu cầu bài toán thì hai đường tròn (C1) và (C2) tiếp xúc ngoài với nhau hoặc hai đường tròn (C1) và (C2) tiếp xúc trong và đường tròn (C2) có bán kính lớn hơn đường tròn (C1).
(C1) có tâm I1(1;1) bán kính R1 = 2
(C2) có tâm I2(-2;-3) bán kính \({R_2} = \sqrt m \left( {m > 0} \right).\;\)
Để (C1) và (C2) tiếp xúc ngoài thì \({I_1}{I_2} = {R_1} + {R_2}.\;\)
⇔ \(\sqrt {{{\left( { - 3} \right)}^2} + \left( { - 4} \right){\;^2}} = 2\; + \sqrt m \;\;\)
⇔ \(5 = 2 + \sqrt m \Leftrightarrow m = \;9\;\left( {tm\;} \right)\;\)
Để đường tròn (C1) và (C2) tiếp xúc trong và đường tròn (C2) có bán kính lớn hơn đường tròn (C1).
⇒ \({R_2} - {R_1} = \;{I_1}{I_2}\) ⇔\(\sqrt m - 2 = \sqrt {\left( { - 3} \right){\;^2} + \;{4^2}} \) ⇔m = 49 ( tm )
Vậy có 2 giá trị của m thỏa mãn yêu cầu bài toán.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm f(x) liên tục trên \(\left( {0; + \infty } \right)\) thỏa mãn \(2{x^2}f\left( {{x^2}} \right) + 2xf\left( {2x} \right) = 2{x^4} - 4x - 3,\forall x \in \left( {0; + \infty } \right)\). Giá trị của \(\int\limits_{\frac{1}{4}}^2 {f\left( x \right){\rm{d}}x} \) bằng
Tìm giá trị nhỏ nhất m của hàm số \(y = {x^3} + 2{x^2} - 7x\) trên đoạn [0;4].
Diện tích toàn phần của hình trụ có đường sinh l và bán kính đáy r bằng
Tìm tập nghiệm của bất phương trình \({\left( {\frac{1}{2}} \right)^{{x^2} - x}} > {\left( {\frac{1}{2}} \right)^{4 - x}}\)
Cho khối nón có chiều cao h = 15 và bán kính đáy r = 2. Thể tích khối nón đã cho bằng
Cho hàm số y = f(x) xác định , liên tục trên R và có bảng biến thiên sau:
Số nghiệm của phương trình f(x) - 2 = 0
Cho hình chóp có đáy S.ABC là tam giác vuông tại B, \(AB = 4a,\,\,\angle ACB = {30^0}\) mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng đáy ( minh họa như hình vẽ bên ). Khoảng cách giữa hai đường thẳng AC và SB bằng
Cho hình chóp tam giác đều có cạnh đáy bằng \(\sqrt 6 \) và chiều cao h = 1. Diện tích của mặt cầu ngoại tiếp của hình chóp đó là
Cho hàm số y = f(x) hàm số liên tục trên R, có đồ thị như hình vẽ bên. Mệnh đề nào sau đúng?
Gọi A là tập hợp tất cả các số tự nhiên có tám chữ số đôi một khác nhau. Chọn ngẫu nhiên một số thuộc A, tính xác suất để số tự nhiên được chọn chia hết cho 45.
Tìm tất cả các giá trị thực của tham số m để hàm số \(y = \frac{{2x - m}}{{x - 1}}\) đồng biến trên khoảng xác định của nó.
Số đường tiệm cận của đồ thị hàm số \(y = \frac{{x - 2}}{{{x^2} - 3x + 2}}\) là
Cho khối tứ diện ABCD có thể tích 2020. Gọi M, N, P, Q lần lượt là trọng tâm của các tam giác ABC, ABD, ACD, BCD. Tính theo V thể tích của khối tứ diện MNPQ.
Cho hàm số \(f\left( x \right) = \left| {{x^4} - 4{x^3} + 4{x^2} + a} \right|\). Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số đã cho trên [0;2]. Có bao nhiêu số nguyên a thuộc [-4;4] sao cho \(M \le 2m\)?
Cho x, y là hai số thực thỏa mãn điều kiện \({x^2} + {y^2} + xy + 4 = 4y + 3x\). Gọi M là giá trị lớn nhất của biểu thức \(P = 3\left( {{x^3} - {y^3}} \right) + 20{x^2} + 2xy + 5{y^2} + 39x\). Mệnh đề nào dưới đây đúng?