Câu hỏi Đáp án 2 năm trước 18

Trong thời gian liên tục 25 năm, một người lao động luôn gửi đúng 4.000.000 đồng vào một ngày cố định của tháng ở ngân hàng M với lại suất không thay đổi trong suốt thời gian gửi tiền là 0,6% tháng. Gọi A đồng là số tiền người đó có được sau 25 năm. Hỏi mệnh đề nào dưới đây là đúng?

A. \(3.500.000.000 < A < 3.550.000.000\)

B. \(3.400.000.000 < A < 3.450.000.000\)

C. \(3.350.000.000 < A < 3.400.000.000\)

Đáp án chính xác ✅

D. \(3.450.000.000 < A < 3.500.000.000\)

Lời giải của giáo viên

verified HocOn247.com

Sau tháng thứ 1 người lao động có: \(4\left( {1 + 0,6\% } \right)\) triệu

Sau tháng thứ 2 người lao động có:

\(\left( {4\left( {1 + 0,6\% } \right) + 4} \right)\left( {1 + 0,6\% } \right) = 4\left[ {{{\left( {1 + 0,6\% } \right)}^2} + \left( {1 + 0,6\% } \right)} \right]\) (triệu)

........

Sau tháng thứ 300 người lao động có:

\(4\left[ {{{\left( {1 + 0,6\% } \right)}^{300}} + {{\left( {1 + 0,6\% } \right)}^{299}}... + \left( {1 + 0,6\% } \right)} \right] = 4\left( {1 + 0,6\% } \right)\frac{{{{\left( {1 + 0,6\% } \right)}^{300}} - 1}}{{\left( {1 + 0,6\% } \right) - 1}} \approx 3364,866\)

(\( \approx 3.364.866.000\) đồng).

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Gọi \(x, y\) là các số thực dương thỏa mãn điều kiện \({\log _9}x = {\log _6}y = {\log _4}\left( {x + y} \right)\) và \(\frac{x}{y} = \frac{{ - a + \sqrt b }}{2}\), với \(a, b\) là hai số nguyên dương. Tính \(a+b\).

Xem lời giải » 2 năm trước 36
Câu 2: Trắc nghiệm

Chọn ngẫu nhiên một số tự nhiên A có bốn chữ số. Gọi N là số thỏa mãn \(3^N=A\). Xác suất để N là số tự nhiên bằng:

Xem lời giải » 2 năm trước 36
Câu 3: Trắc nghiệm

Cho \(f\left( x \right) = {2.3^{{{\log }_{81}}x}} + 3\). Tính \(f'(1)\).

Xem lời giải » 2 năm trước 34
Câu 4: Trắc nghiệm

Tập nghiệm của bất phương trình \({\log _2}\left( {{x^2} - 3x + 1} \right) \le 0\) là

Xem lời giải » 2 năm trước 33
Câu 5: Trắc nghiệm

Gọi \(a\) là một nghiệm của phương trình \({\left( {26 + 15\sqrt 3 } \right)^x} + 2{\left( {7 + 4\sqrt 3 } \right)^x} - 2{\left( {2 - \sqrt 3 } \right)^x} = 1\). Khi đó giá trị của biểu thức nào sau đây là đúng?

Xem lời giải » 2 năm trước 32
Câu 6: Trắc nghiệm

Tính giá trị của biểu thức \(P = \log \left( {\tan 1^\circ } \right) + \log \left( {\tan 2^\circ } \right) + \log \left( {\tan 3^\circ } \right) + ... + \log \left( {\tan 89^\circ } \right)\).

Xem lời giải » 2 năm trước 32
Câu 7: Trắc nghiệm

Cho hàm số \(y=a^x\) với \(0 < a \ne 1\) có đồ thị (C). Chọn khẳng định sai?

Xem lời giải » 2 năm trước 32
Câu 8: Trắc nghiệm

Cho \(n\) là số nguyên dương và \(a > 0,a \ne 1\). Tìm \(n\) sao cho \({\log _a}2019 + {\log _{\sqrt a }}2019 + {\log _{\sqrt[3]{a}}}2019 + ... + {\log _{\sqrt[n]{a}}}2019 = 2033136.{\log _a}2019\)

Xem lời giải » 2 năm trước 31
Câu 9: Trắc nghiệm

Biết \({\log _a}b = 2\). Giá trị của \({\log _{{a^2}b}}\frac{{{a^4}}}{{b\sqrt b }}\) bằng

Xem lời giải » 2 năm trước 31
Câu 10: Trắc nghiệm

Số các giá trị nguyên của tham số \(m\) để phương trình \({\log _{\sqrt 2 }}\left( {x - 1} \right) = {\log _2}\left( {mx - 8} \right)\) có hai nghiệm phân biệt là:

Xem lời giải » 2 năm trước 31
Câu 11: Trắc nghiệm

Đặt \(a = {\log _2}3,b = {\log _2}5,c = {\log _2}7\). Biểu thức biểu diễn \({\log _{60}}1050\) theo \(a, b, c\) là.

Xem lời giải » 2 năm trước 31
Câu 12: Trắc nghiệm

Cho \(a = {\log _2}5,b = {\log _3}5\). Tính \({\log _{24}}600\) theo \(a, b\).

Xem lời giải » 2 năm trước 31
Câu 13: Trắc nghiệm

Cho phương trình \({\log _5}\left( {{5^x} - 1} \right).{\log _{25}}\left( {{5^{x + 1}} - 5} \right) = 1\). Khi đặt \(t = {\log _5}\left( {{5^x} - 1} \right)\), ta được phương trình nào dưới đây?

Xem lời giải » 2 năm trước 31
Câu 14: Trắc nghiệm

Cho \(a, b, c >1\). Biết rằng biểu thức \(P = lo{g_a}\left( {bc} \right) + lo{g_b}\left( {ac} \right) + 4lo{g_c}\left( {ab} \right)\) đạt giá trị nhất \(m\) khi \(lo{g_b}c = n\). Tính giá trị \(m+n\).

Xem lời giải » 2 năm trước 30
Câu 15: Trắc nghiệm

Cho hàm số \(y=f(x)\) xác định và liên tục trên đoạn \(\left[ {0;\frac{7}{2}} \right]\), có đồ thị của hàm số \(y=f'(x)\) như hình vẽ. Hỏi hàm số \(y=f(x)\) đạt giá trị nhỏ nhất trên đoạn \(\left[ {0;\frac{7}{2}} \right]\) tại điểm \(x_0\) nào dưới đây?

Xem lời giải » 2 năm trước 30

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »