Lời giải của giáo viên
Ta có \(\frac{{{{\log }_3}5{{\log }_5}a}}{{1 + {{\log }_3}2}} - {\log _6}b = 2 \Leftrightarrow \frac{{{{\log }_3}a}}{{{{\log }_3}6}} - {\log _6}b = 2 \Leftrightarrow {\log _6}a - {\log _6}b = 2\)
\( \Leftrightarrow {\log _6}\frac{a}{b} = 2 \Leftrightarrow \frac{a}{b} = 36 \Leftrightarrow a = 36b\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(f\left( x \right) = {5^x}{.8^{2{x^3}}}\). Khẳng định nào sau đây là khẳng định sai?
Đặt \(f\left( n \right) = {\left( {{n^2} + n + 1} \right)^2} + 1\). Xét dãy số \(\left( {{u_n}} \right)\) sao cho \({u_n} = \frac{{f\left( 1 \right).f\left( 3 \right).f\left( 5 \right)...f\left( {2n - 1} \right)}}{{f\left( 2 \right).f\left( 4 \right).f\left( 6 \right)...f\left( {2n} \right)}}\). Tính \(\lim n\sqrt {{u_n}} \)
Biết đường thẳng \(y = - \frac{9}{4}x - \frac{1}{{24}}\) cắt đồ thị hàm số \(y = \frac{{{x^3}}}{3} + \frac{{{x^2}}}{2} - 2x\) tại một điểm duy nhất; ký hiệu \(\left( {{x_0};{y_0}} \right)\) là tọa độ điểm đó. Tìm \({y_0}\)
Cho hai hàm số \(F\left( x \right) = \left( {{x^2} + ax + b} \right){e^{ - x}}\) và \(f\left( x \right) = \left( { - {x^2} + 3x + 6} \right){e^{ - x}}\). Tìm a và b để \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right)\)
Đồ thị hàm số \(y = {x^3} - 3{x^2} + 2ax + b\) có điểm cực tiểu \(A\left( {2; - 2} \right)\). Khi đó \(a + b = ?\)
Cho cấp số cộng \(\left( {{u_n}} \right)\) và gọi \({S_n}\) là tổng n số hạng đầu tiên của nó. Biết \({S_7} = 77\) và \({S_{12}} = 192\). Tìm số hạng tổng quát \({u_n}\) của cấp số cộng đó
Tìm các giá trị thực của tham số m để bất phương trình \({\log _{0,02}}\left( {{{\log }_2}\left( {{3^x} + 1} \right)} \right) > {\log _{0,02}}m\) có nghiệm với mọi \(x \in \left( { - \infty ;0} \right)\)
Trong không gian với hệ trục tọa độ Oxyz, cho \(\overrightarrow {OA} = 2\overrightarrow i + 2\overrightarrow j + 2\overrightarrow k ,\,\,B\left( { - 2;2;0} \right)\) và \(C\left( {4;1; - 1} \right)\). Trên mặt phẳng (Oxz), điểm nào dưới đây cách đều ba điểm A, B, C.
Cho hình chóp tam giác đều S.ABC có độ dài cạnh đáy bằng a, cạnh bên bằng \(a\sqrt 3 \). Gọi O là tâm của đáy ABC, \({d_1}\) là khoảng cách từ A đến mặt phẳng (SBC) và \({d_2}\) là khoảng cách từ O đến mặt phẳng (SBC). Tính \(d = {d_1} + {d_2}\)
Cho hàm số \(f\left( x \right) = {\ln ^2}\left( {{x^2} - 2x + 4} \right)\). Tìm các giá trị của x để \(f'\left( x \right) > 0\)
Cho \(f\left( x \right)\) là hàm liên tục trên đoạn \(\left[ {0;a} \right]\) thỏa mãn \(\left\{ \begin{array}{l}f\left( x \right).f\left( {a - x} \right) = 1\\f\left( x \right) > 0,\,\,\forall x \in \left[ {0;a} \right]\end{array} \right.\) và \(\int\limits_0^a {\frac{{dx}}{{1 + f\left( x \right)}}} = \frac{{ba}}{c}\), trong đó b, c là hai số nguyên dương và \(\frac{b}{c}\) là phân số tối giản. Khi đó \(b + c\) có giá trị thuộc khoảng nào dưới đây?
Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có \(\int\limits_0^1 {f\left( x \right)dx} = 2;\,\,\int\limits_0^3 {f\left( x \right)dx} = 6\). Tính \(I = \int\limits_{ - 1}^1 {f\left( {\left| {2x - 1} \right|} \right)dx} \)
Tìm số hạng không chứa x trong khai triển của \({\left( {x\sqrt x + \frac{1}{{{x^4}}}} \right)^n}\), với \(x > 0\), nếu biết rằng \(C_n^2 - C_n^1 = 44\)
Biết \({x_1},\,{x_2}\), là hai nghiệm của phương trình \({\log _7}\left( {\frac{{4{x^2} - 4x + 1}}{{2x}}} \right) + 4{x^2} + 1 = 6x\) và \({x_1} + 2{x_2} = \frac{1}{4}\left( {a + \sqrt b } \right)\) với a, b là hai số nguyên dương. Tính \(a + b\)
Cho hàm số \(y = f\left( x \right)\) xác định, liên tục trên \(\mathbb{R}\backslash \left\{ 1 \right\}\) và có bảng biến thiên như sau:
Tìm điều kiện của m để phương trình \(f\left( x \right) = m\) có 3 nghiệm phân biệt.