Xét hình chóp S.ABC với M, N, P lần lượt là các điểm trên SA, SB, SC sao cho \(\dfrac{{SM}}{{MA}} = \dfrac{{SN}}{{NB}} = \dfrac{{SP}}{{PC}} = \dfrac{1}{2}\). Tỉ số thể tích của khối tứ diện SMNP với SABC là:
A. \(\dfrac{1}{9}\).
B. \(\dfrac{1}{{27}}\).
C. \(\dfrac{1}{4}\).
D. \(\dfrac{1}{8}\).
Lời giải của giáo viên
Ta có: \(\dfrac{{SM}}{{MA}} = \dfrac{{SN}}{{NB}} = \dfrac{{SP}}{{PC}} = \dfrac{1}{2} \)
\(\Rightarrow \dfrac{{SM}}{{SA}} = \dfrac{{SN}}{{SB}} = \dfrac{{SP}}{{SC}} = \dfrac{1}{3}\)
Khi đó \(\dfrac{{{V_{S.MNP}}}}{{{V_{S.ABC}}}} = \dfrac{{SM}}{{SA}}.\dfrac{{SN}}{{SB}}.\dfrac{{SP}}{{SC}} = {\left( {\dfrac{1}{3}} \right)^3} = \dfrac{1}{{27}}\)
Chọn đáp án B.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số f(x) liên tục trên đoạn [a ; b]. Hãy chọn mệnh đề sai.
Trong không gian tọa độ \(Oxyz\)cho ba điểm \(A\left( {2;5;1} \right),\,B\left( { - 2; - 6;2} \right),\,C\left( {1;2; - 1} \right)\) và điểm \(M\left( {m;m;m} \right)\), để \(M{A^2} - M{B^2} - M{C^2}\) đạt giá trị lớn nhất thì \(m\) bằng
Cho hình chóp SABC có đáy ABC vuông cân tại a với AB = AC = a biết tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với (ABC) ,mặt phẳng (SAC) hợp với (ABC) một góc 45o. Tính thể tích của SABC.
Hàm số \(y = {{2x + 1} \over {x - 1}}\) có bao nhiêu điểm cực trị ?
Cho a, b là các số dương thỏa mãn điều kiện: \({\log _{{2 \over 3}}}x = {1 \over 4}{\log _{{2 \over 3}}}a + {4 \over 7}{\log _{{2 \over 3}}}b\). Khi đó x nhận giá trị nào ?
Phần thực và phần ảo của số phức \(z = - \dfrac{{1 + i}}{{1 - i}}\) là:
Giá trị của biểu thức \(\left( {{{25}^{1 + \sqrt 2 }} - {5^{2\sqrt 2 }}} \right){.5^{ - 1 - 2\sqrt 2 }}\) là:
Trong không gian \(Oxyz\), cho tứ diện \(ABCD\) có \(A(2;1; - 1),B(3;0;1),C(2; - 1;3)\) và \(D\) thuộc trục \(Oy\). Biết \({V_{ABCD}} = 5\) và có hai điểm \({D_1}\left( {0;{y_1};0} \right),\,{D_2}\left( {0;{y_2};0} \right)\) thỏa mãn yêu cầu bài toán. Khi đó \({y_1} + {y_2}\) bằng
Một hình nón có đường sinh bằng \(8{\rm{ cm}}\), diện tích xung quanh bằng \(240\pi {\rm{ c}}{{\rm{m}}^2}\). Đường kính của đường tròn đáy hình nón bằng
Cho hàm số y = f(x) liên tục trên đoạn [a ;b]. Diện tích hình phẳng giới hạn bởi đường cong y = f(x), trục hoành, các đường thẳng x = a, x = b là :
Xét tích phân \(\int\limits_0^{\dfrac{x}{3}} {\dfrac{{\sin 2x}}{{1 + \cos x}}\,dx} \). Thực hiện phép đổi biến t = cosx, ta có thể đưa I về dạng nào sau đây ?
Nghiệm của bất phương trình \({\log _{{1 \over 2}}}({x^2} + 2x - 8) \ge - 4\) là:
Cho hàm số \(y = {x^3} - 3x + 1\). Tìm khẳng định đúng.
Cho hàm số y = f(x) có \(\mathop {\lim }\limits_{x \to - \infty } f(x) = - 2,\,\,\mathop {\lim }\limits_{x \to + \infty } f(x) = 2\). Khẳng định nào sau đây đúng ?