Lời giải của giáo viên
\({{\log }_{2}}a={{\log }_{8}}\left( ab \right)\Leftrightarrow {{\log }_{2}}a=\frac{1}{3}{{\log }_{2}}\left( ab \right)\)
\(\Leftrightarrow 3{{\log }_{2}}a={{\log }_{2}}\left( ab \right)\Leftrightarrow {{\log }_{2}}{{a}^{3}}={{\log }_{2}}\left( ab \right)\Leftrightarrow {{a}^{3}}=ab\Leftrightarrow {{a}^{2}}=b\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số f(x) liên tục trên R và thỏa mãn \(xf({{x}^{3}})+f(1-{{x}^{2}})=-{{x}^{10}}+{{x}^{6}}-2x,\forall x\in \mathbb{R}\). Khi đó \(\int\limits_{-1}^{0}{f(x)dx}\) bằng
Trong không gian Oxyz, hình chiếu vuông góc của điểm M(2; -2; 1) trên mặt phẳng (Oxy) có tọa độ là
Trong không gian Oxyz , vecto nào dưới đây là một vecto chỉ phương của đường thẳng đi qua hai điểm M(2; 3; -1) và N(4; 5; 3)?
Tập nghiệm của bất phương trình \({{5}^{x-1}}\ge {{5}^{{{x}^{2}}-x-9}}\) là?
Nghiệm của phương trình \({{\log }_{3}}(2x-1)=2\) là
Từ một nhóm học sinh gồm 6 nam và 8 nữ, có bao nhiêu cách chọn ra một học sinh?
Tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số \(y=\frac{5{{x}^{2}}-4x-1}{{{x}^{2}}-1}\) là
Cho khối lăng trụ đứng ABCD.A’B’C’D’ có đáy là hình thoi cạnh a, \(BD=\sqrt{3}a\) và AA’ = 4a (minh họa như hình bên). Thể tích của khối lăng trụ đã cho bằng
Với a là số thực dương tùy ý, \({{\log }_{2}}({{a}^{2}})\) bằng
Trên mặt phẳng tọa độ, điểm biểu diễn số phức \(z={{(1+2i)}^{2}}\) là điểm nào dưới đây?
Cho khối lập phương có cạnh bằng 6. Thể tích của khối lập phương đã cho bằng
Trong không gian Oxyz, cho các vecto \(\overrightarrow{a}=(1;0;3)\) và \(\overrightarrow{b}=(-2;2;5)\). Tích vô hướng \(\overrightarrow{a}.(\overrightarrow{a}+\overrightarrow{b})\) bằng
Cho hình chóp S.ABCD có đáy là hình thang, AB = 2a, AD = DC = CB = a, SA vuông góc với mặt phẳng đáy và SA = 3a (minh họa như hình bên). Gọi M là trung điểm của AB. Khoảng cách giữa hai đường thẳng SB vad DM bằng
Cho hàm số f(x), bảng xát dấu của f’(x) như sau:
Số điểm cực trị của hàm số đã cho là