Đề thi HK2 Toán 9 năm 2018 – 2019 trường THCS Phạm Hồng Thái – Hà Nội

Đề thi HK2 Toán 9 năm học 2018 – 2019 trường THCS Phạm Hồng Thái – Hà Nội gồm 1 trang với 5 bài toán dạng tự luận, học sinh làm bài thi học kỳ 2 Toán 9 trong khoảng thời gian 90 phút, kỳ thi nhằm kiểm định chất lượng dạy và học môn Toán 9 của giáo viên và học sinh trong giai đoạn học kỳ 2 năm học 2018 – 2019
(351) 1170 08/08/2022

Đề thi HK2 Toán 9 năm học 2018 – 2019 trường THCS Phạm Hồng Thái – Hà Nội gồm 1 trang với 5 bài toán dạng tự luận, học sinh làm bài thi học kỳ 2 Toán 9 trong khoảng thời gian 90 phút, kỳ thi nhằm kiểm định chất lượng dạy và học môn Toán 9 của giáo viên và học sinh trong giai đoạn học kỳ 2 năm học 2018 – 2019.

Trích dẫn đề thi HK2 Toán 9 năm 2018 – 2019 trường THCS Phạm Hồng Thái – Hà Nội:
+ Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Một người dự định đi xe gắn máy từ địa điểm A đến địa điểm B cách nhau 90 km. Vì có việc gấp phải đến B trước giờ dự định là 45 phút nên người ấy phải tăng vận tốc lên mỗi giờ 10 km. Hãy tính vận tốc mà người đó dự định đi.
[ads]
+ Cho đường tròn (O;R) và điểm A nằm ngoài đường tròn. Các tiếp tuyến với đường tròn (O) kẻ từ A tiếp xúc với đường tròn (O) tại B và C. Trên cung nhỏ BC lấy điểm M. Từ M kẻ MH vuông góc với BC, MK vuông góc với AC và MI vuông góc với AB.
1) Chứng minh tứ giác MIBH nội tiếp.
2) Chứng minh góc MIH bằng góc MHK.
3) Chứng minh: MH^2 = MI.MK.
4) Tìm vị trí điểm M trên cung nhỏ BC để biểu thức P = MI^2 + MK^2 – 2MH^2.
+ Tìm tọa độ giao điểm (nếu có) của (d) và (P), với (P): y = x^2 và (d): y = 2x + 3.


(351) 1170 08/08/2022