Với \(a\) và \(b\) là hai số thực dương, \(a \ne 1.\) Giá trị của \({a^{{{\log }_a}{b^3}}}\) bằng:
lượt xem
Một khối trụ có thiết diện qua một trục là một hình vuông. Biết diện tích xung quanh của khối trụ bằng \(16\pi \). Thể tích \(V\) của khối trụ bằng:
lượt xem
Đường cong ở hình bên dưới là đồ thị của một trong bốn hàm số dưới đây. Hàm số đó là hàm số nào ?
lượt xem
Cho khối nón có bán kính đáy là \(r\) , chiều cao \(h\) . Thể tích \(V\) của khối nón đó là:
lượt xem
lượt xem
lượt xem
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A, D, cạnh bên SA vuông góc với mặt đáy. Biết \(AB = 2AD = 2DC = 2a\), góc giữa hai mặt phẳng (SAB) và (SBC) là \({60^0}\). Độ dài cạnh SA là:
lượt xem
lượt xem
Cho hàm số \(y = f\left( x \right)\) xác định và liên tục trên R, có đạo hàm \(f'\left( x \right)\). Biết rằng đồ thị hàm số \(f'\left( x \right)\) như hình vẽ. Xác định điểm cực đại của hàm số \(g\left( x \right) = f\left( x \right) + x\).
lượt xem
lượt xem
Tập hợp tất cả các giá trị của tham số m để hàm số \(y = \dfrac{{4x + 7}}{{{{\log }_{2018}}\left( {{x^2} - 2x + {m^2} - 6m + 10} \right)}}\) xác định với mọi \(x \in R\) là:
lượt xem
Một hộp sữa hình trụ có thể tích V (không đổi) được làm từ một tấm tôn có diện tích đủ lớn. Nếu hộp sữa chỉ kín một đáy thì để tốn ít vật liệu nhất, hệ thức giữa bán kính đáy R và đường cao h bằng:
lượt xem
lượt xem
Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(y' = {x^2} - 3x + {m^2} + 5m + 6.\) Tìm tất cả các giá trị của m để hàm số đồng biến trên \(\left( {3;\;5} \right).\)
lượt xem
Gọi \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right) = {x^3} - 2{x^2} + 1\) thỏa mãn \(F\left( 0 \right) = 5.\) Khi đó phương trình \(F\left( x \right) = 5\) có số nghiệm thực là:
lượt xem
Gọi M là giá trị lớn nhất của hàm số \(f\left( x \right) = 6\sqrt {{x^2} - 6x + 12} + 6x - {x^2} - 4\). Tính tích các nghiệm của phương trình \(f\left( x \right) = M\).
lượt xem
Có bao nhiêu giá trị nguyên của tham số m để bất phương trình \(\log \left( {2{x^2} + 3} \right) < \log \left( {{x^2} + mx + 1} \right)\) có tập nghiệm là \(R.\)
lượt xem
lượt xem
Tìm tất cả các giá trị của tham số \(m\) để phương trình \({\left( {7 - 3\sqrt 5 } \right)^{{x^2}}} + m{\left( {7 + 3\sqrt 5 } \right)^{{x^2}}} = {2^{{x^2} - 1}}\) có đúng bốn nghiệm phân biệt.
lượt xem
lượt xem
Có bao nhiêu giá trị nguyên của tham số m để hàm số: \(y = {x^8} + \left( {m + 1} \right){x^5} - \left( {{m^2} - 1} \right){x^4} + 1\) đạt cực tiểu tại \(x = 0?\)
lượt xem
lượt xem
Trong không gian với hệ trục tọa độ \(Oxyz\) cho \(\overrightarrow a = \left( {1; - 2;3} \right)\) và \(\overrightarrow b = \left( {2; - 1; - 1} \right).\) Khẳng định nào sau đây đúng?
lượt xem
Cho hai góc lượng giác a và b. Trong các khẳng định sau, khẳng định nào là khẳng định sai?
lượt xem
Tính tích tất cả các nghiệm của phương trình \({2^{2{x^2} + 5x + 4}} = 4.\)
lượt xem
Tìm nguyên hàm của hàm số \(f\left( x \right) = \dfrac{1}{{x{{\left( {\ln x + 2} \right)}^2}}}\).
lượt xem
Cho hàm số \(y = f\left( x \right)\) có đạo hàm cấp 2 trên khoảng \(K\) và \({x_0} \in K.\) Mệnh đề nào sau đây đúng?
lượt xem
Nguyên hàm của hàm số \(f\left( x \right) = 4{x^3} + x - 1\) là:
lượt xem
Cho khối chóp \(SABCD\) có đáy là hình vuông cạnh \(\dfrac{a}{{\sqrt 2 }},\;\;\Delta SAC\) vuông tại \(S\) và nằm trong mặt phẳng vuông góc với đáy, cạnh bên \(SA\) tạo với đáy góc \({60^0}.\) Tính thể tích \(V\)của khối chóp \(SABCD.\)
lượt xem
Cho tứ diện ABCD có \(\left( {ACD} \right) \bot \left( {BCD} \right),\,\,AC = AD = BC = BD = a,\,\,CD = 2x\). Giá trị của x để hai mặt phẳng (ABC) và (ABD) vuông góc với nhau là:
lượt xem
Tìm tập nghiệm \(S\) của phương trình \({2^{x + 1}} = 4.\)
lượt xem
Cho x là số thực dương, khai triển nhị thức \({\left( {{x^2} + \dfrac{1}{x}} \right)^{12}}\) ta có hệ số của số hạng chứa \({x^m}\) bằng 792. Giá trị của m là:
lượt xem
Cho hàm số \(y = {\log _{\frac{1}{2}}}\left| x \right|.\) Mệnh đề nào dưới đây là mệnh đề sai?
lượt xem
Cắt khối trụ bởi một mặt phẳng qua trục ta được thiết diện là hình chữ nhật ABCD có AB và CD thuộc hai đáy hình trụ, \(AB = 4a;\,\,AC = 5a\). Tính thể tích khối trụ:
lượt xem
Giá trị lớn nhất của hàm số \(y = {x^2} + \dfrac{{16}}{x}\) trên đoạn \(\left[ {\dfrac{3}{2};\;4} \right]\) bằng:
lượt xem
Trong mặt phẳng với hệ tọa độ Oxy cho hai điểm \(A\left( { - 2;4} \right)\) và \(B\left( {8;4} \right)\). Tìm tọa độ điểm C trên trục Ox, có hoành độ dương sao cho tam giác ABC vuông tại C.
lượt xem
Gọi A, B lần lượt là các giá trị nhỏ nhất, giá trị lớn nhất của hàm số \(y = \dfrac{{x + {m^2} + 2m}}{{x - 2}}\) trên đoạn \(\left[ {3;4} \right]\). Tìm tất cả các giá trị thực của tham số m để \(A + B = \dfrac{{19}}{2}\).
lượt xem
Cho hình chóp SABCD, có đáy ABCD là hình vuông tâm O, cạnh bên vuông góc với mặt đáy. Gọi M là trung điểm của SA, N là hình chiếu vuông góc của A lên SO. Mệnh đề nào sau đây đúng?
lượt xem
Công thức nào sau đây là sai?
lượt xem
Một hình lăng trụ tam giác đều có nhiêu mặt phẳng đối xứng?
lượt xem
Cho hai góc nhọn a và b thỏa mãn \(\tan a = \dfrac{1}{7}\) và \(\tan b = \dfrac{3}{4}\). Tính \(a + b\).
lượt xem
Đặt \(a = {\log _2}5\) và \(b = {\log _3}5.\) Biểu diễn đúng của \({\log _6}5\) theo \(a,\;b\) là:
lượt xem
Trong không gian \(Oxyz,\) phương trình của mặt phẳng \(\left( P \right)\) đi qua điểm \(B\left( {2;\;1; - 3} \right)\) đồng thời vuông góc với hai mặt phẳng \(\left( Q \right):\;x + y + 3z = 0,\;\;\left( R \right):\;\;2x - y + z = 0\) là:
lượt xem
Cho cấp số nhân \(\left( {{u_n}} \right)\) có \({u_1} = 2\) và biểu thức \(20{u_1} - 10{u_2} + {u_3}\) đạt giá trị nhỏ nhất. Tìm số hạng thứ bảy của cấp số nhân \(\left( {{u_n}} \right)\) ?
lượt xem
Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(y' = {x^2}\left( {x - 2} \right).\) Mệnh đề nào sau đây đúng?
lượt xem
Cho hàm số \(y = f\left( x \right)\) có \(f'\left( x \right) > 0\,\,\forall x \in R\). Tìm tập hợp tất cả các giá trị thực của x để \(f\left( {\dfrac{1}{x}} \right) < f\left( 1 \right)\).
lượt xem
Xác định các hệ số \(a,\;b,\;c\) để đồ thị hàm số \(y = \dfrac{{ax - 1}}{{bx + c}}\) có đồ thị hàm số như hình vẽ bên:
lượt xem
Trên đồ thị \(\left( C \right):\,\,y = \dfrac{{x + 1}}{{x + 2}}\) có bao nhiêu điểm M mà tiếp tuyến với \(\left( C \right)\) tại M song song với đường thẳng \(d:\,\,x + y = 1\).
lượt xem
Tìm tất cả các giá trị của tham số m để phương trình \({x^3} + 3{x^2} - 2 = m\) có hai nghiệm phân biệt.
lượt xem
Các khoảng nghịch biến của hàm số \(y = - {x^4} + 2{x^2} - 4\) là
lượt xem