Trong không gian \(Oxyz,\) phương trình của mặt phẳng \(\left( P \right)\) đi qua điểm \(B\left( {2;\;1; - 3} \right)\) đồng thời vuông góc với hai mặt phẳng \(\left( Q \right):\;x + y + 3z = 0,\;\;\left( R \right):\;\;2x - y + z = 0\) là:
A. \(4x + 5y - 3z + 22 = 0\)
B. \(4x - 5y - 3z - 12 = 0\)
C. \(2x + y - 3z - 14 = 0\)
D. \(4x + 5y - 3z - 22 = 0\)
Lời giải của giáo viên
Mặt phẳng \(\left( P \right)\) vuông góc với \(\left( Q \right),\;\;\left( R \right) \Rightarrow \overrightarrow {{n_P}} \bot \overrightarrow {{n_Q}} ,\;\;\overrightarrow {n { _P}} \bot \overrightarrow {{n_R}} \Rightarrow \overrightarrow {{n_P}} = \left[ {\overrightarrow {{n_Q}} ,\;\overrightarrow {{n_R}} } \right].\)
Ta có: \(\overrightarrow {{n_Q}} = \left( {1;\;1;\;3} \right),\;\;\overrightarrow {{n_R}} = \left( {2; - 1;\;1} \right).\)
\( \Rightarrow \overrightarrow {{n_P}} = \left[ {\overrightarrow {{n_Q}} ,\;\overrightarrow {{n_R}} } \right] = \left( {4;\;5; - 3} \right).\)
Phương trình mặt phẳng đi qua điểm \(B\left( {2;\;1; - 3} \right)\) và có VTPT \(\overrightarrow n = \left( {4;\;5; - 3} \right)\) là:
\(4\left( {x - 2} \right) + 5\left( {y - 1} \right) - 3\left( {z + 3} \right) = 0 \Leftrightarrow 4x + 5y - 3z - 22 = 0.\)
Chọn D.
CÂU HỎI CÙNG CHỦ ĐỀ
Tìm nguyên hàm của hàm số \(f\left( x \right) = \dfrac{1}{{x{{\left( {\ln x + 2} \right)}^2}}}\).
Trong không gian với hệ tọa độ Oxyz, cho \(A\left( { - 3;0;0} \right);\,\,B\left( {0;0;3} \right);\,\,C\left( {0; - 3;0} \right)\) và mặt phẳng \(\left( P \right):\,\,x + y + z - 3 = 0\). Tìm trên (P) điểm M sao cho \(\left| {\overrightarrow {MA} + \overrightarrow {MB} - \overrightarrow {MC} } \right|\) nhỏ nhất.
Một hộp sữa hình trụ có thể tích V (không đổi) được làm từ một tấm tôn có diện tích đủ lớn. Nếu hộp sữa chỉ kín một đáy thì để tốn ít vật liệu nhất, hệ thức giữa bán kính đáy R và đường cao h bằng:
Xác định các hệ số \(a,\;b,\;c\) để đồ thị hàm số \(y = \dfrac{{ax - 1}}{{bx + c}}\) có đồ thị hàm số như hình vẽ bên:
Cho hàm số \(f\left( x \right)\) thỏa mãn \({\left[ {f'\left( x \right)} \right]^2} + f\left( x \right).f''\left( x \right) = {x^3} - 2x\;\;\forall x \in R\) và \(f\left( 0 \right) = f'\left( 0 \right) = 2.\) Tính giá trị của \(T = {f^2}\left( 2 \right).\)
Giá trị lớn nhất của hàm số \(y = {x^2} + \dfrac{{16}}{x}\) trên đoạn \(\left[ {\dfrac{3}{2};\;4} \right]\) bằng:
Cho hàm số \(y = {\log _{\frac{1}{2}}}\left| x \right|.\) Mệnh đề nào dưới đây là mệnh đề sai?
Tìm tất cả các giá trị của tham số \(m\) để phương trình \({\left( {7 - 3\sqrt 5 } \right)^{{x^2}}} + m{\left( {7 + 3\sqrt 5 } \right)^{{x^2}}} = {2^{{x^2} - 1}}\) có đúng bốn nghiệm phân biệt.
Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(y' = {x^2} - 3x + {m^2} + 5m + 6.\) Tìm tất cả các giá trị của m để hàm số đồng biến trên \(\left( {3;\;5} \right).\)
Cho hàm số \(y = f\left( x \right)\) xác định và liên tục trên R, có đạo hàm \(f'\left( x \right)\). Biết rằng đồ thị hàm số \(f'\left( x \right)\) như hình vẽ. Xác định điểm cực đại của hàm số \(g\left( x \right) = f\left( x \right) + x\).
Cho hàm số \(y = f\left( x \right)\) có \(f'\left( x \right) > 0\,\,\forall x \in R\). Tìm tập hợp tất cả các giá trị thực của x để \(f\left( {\dfrac{1}{x}} \right) < f\left( 1 \right)\).
Cho hình chóp S.ABCD có \(SC = x\,\,\left( {0 < x < a\sqrt 3 } \right)\), các cạnh còn lại đều bằng a. Biết rằng thể tích khối chóp S.ABCD lớn nhất khi và chỉ khi \(x = \dfrac{{a\sqrt m }}{n}\,\,\left( {m,n \in {N^*}} \right)\). Mệnh đề nào sau đây đúng?
Với \(a\) và \(b\) là hai số thực dương, \(a \ne 1.\) Giá trị của \({a^{{{\log }_a}{b^3}}}\) bằng:
Đường cong ở hình bên dưới là đồ thị của một trong bốn hàm số dưới đây. Hàm số đó là hàm số nào ?