Cho tứ diện ABCD có \(\left( {ACD} \right) \bot \left( {BCD} \right),\,\,AC = AD = BC = BD = a,\,\,CD = 2x\). Giá trị của x để hai mặt phẳng (ABC) và (ABD) vuông góc với nhau là:
A. \(\dfrac{{a\sqrt 2 }}{3}\)
B. \(\dfrac{{a\sqrt 3 }}{3}\)
C. \(\dfrac{{a\sqrt 3 }}{2}\)
D. \(\dfrac{{a\sqrt 5 }}{3}\)
Lời giải của giáo viên
Gọi H là trung điểm của CD.
Do tam giác ACD cân tại A và tam giác BCD cân tại B
\( \Rightarrow \left\{ \begin{array}{l}CD \bot AH\\CD \bot BH\end{array} \right. \Rightarrow CD \bot \left( {ABH} \right) \Rightarrow CD \bot AB\)
Gọi E là trung điểm của AB, do tam giác ABC cân tại C \( \Rightarrow CE \bot AB\).
Ta có \(\left\{ \begin{array}{l}AB \bot CD\\AB \bot CE\end{array} \right. \Rightarrow AB \bot \left( {CDE} \right) \Rightarrow AB \bot DE\)
\(\left\{ \begin{array}{l}\left( {ABC} \right) \cap \left( {ABD} \right) = AB\\\left( {ABC} \right) \supset CE \bot AB\\\left( {ABD} \right) \supset DE \bot AB\end{array} \right. \Rightarrow \angle \left( {\left( {ABC} \right);\left( {ABD} \right)} \right) = \angle \left( {CE;DE} \right) = \angle CED = {90^0}\)
Ta có \(\Delta ABC = \Delta ADC\,\,\left( {c.c.c} \right) \Rightarrow CE = DE \Rightarrow \Delta CDE\) vuông cân tại E
\( \Rightarrow CD = CE\sqrt 2 \Leftrightarrow 2x = CE\sqrt 2 \Leftrightarrow CE = x\sqrt 2 \) (*)
Xét tam giác vuông CBH có \(B{H^2} = B{C^2} - C{H^2} = {a^2} - {x^2}\)
Xét tam giác vuông ACH có \(A{H^2} = A{C^2} - C{H^2} = {a^2} - {x^2}\)
Xét tam giác vuông ABH có \(A{B^2} = A{H^2} + B{H^2} = 2{a^2} - 2{x^2} \Rightarrow AE = \dfrac{{\sqrt {2{a^2} - 2{x^2}} }}{2}\)
Xét tam giác vuông ACE có \(C{E^2} = A{C^2} - A{E^2} = {a^2} - \dfrac{{{a^2} - {x^2}}}{2} = \dfrac{{{a^2} + {x^2}}}{2} \Rightarrow CE = \dfrac{{\sqrt {{a^2} + {x^2}} }}{{\sqrt 2 }}\)
Thay vào (*) ta có \(\dfrac{{\sqrt {{a^2} + {x^2}} }}{{\sqrt 2 }} = x\sqrt 2 \Leftrightarrow {a^2} + {x^2} = 4{x^2} \Leftrightarrow 3{x^2} = {a^2} \Leftrightarrow x = \dfrac{{a\sqrt 3 }}{3}\).
Chọn B.
CÂU HỎI CÙNG CHỦ ĐỀ
Tìm nguyên hàm của hàm số \(f\left( x \right) = \dfrac{1}{{x{{\left( {\ln x + 2} \right)}^2}}}\).
Trong không gian với hệ tọa độ Oxyz, cho \(A\left( { - 3;0;0} \right);\,\,B\left( {0;0;3} \right);\,\,C\left( {0; - 3;0} \right)\) và mặt phẳng \(\left( P \right):\,\,x + y + z - 3 = 0\). Tìm trên (P) điểm M sao cho \(\left| {\overrightarrow {MA} + \overrightarrow {MB} - \overrightarrow {MC} } \right|\) nhỏ nhất.
Một hộp sữa hình trụ có thể tích V (không đổi) được làm từ một tấm tôn có diện tích đủ lớn. Nếu hộp sữa chỉ kín một đáy thì để tốn ít vật liệu nhất, hệ thức giữa bán kính đáy R và đường cao h bằng:
Xác định các hệ số \(a,\;b,\;c\) để đồ thị hàm số \(y = \dfrac{{ax - 1}}{{bx + c}}\) có đồ thị hàm số như hình vẽ bên:
Cho hàm số \(f\left( x \right)\) thỏa mãn \({\left[ {f'\left( x \right)} \right]^2} + f\left( x \right).f''\left( x \right) = {x^3} - 2x\;\;\forall x \in R\) và \(f\left( 0 \right) = f'\left( 0 \right) = 2.\) Tính giá trị của \(T = {f^2}\left( 2 \right).\)
Giá trị lớn nhất của hàm số \(y = {x^2} + \dfrac{{16}}{x}\) trên đoạn \(\left[ {\dfrac{3}{2};\;4} \right]\) bằng:
Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(y' = {x^2} - 3x + {m^2} + 5m + 6.\) Tìm tất cả các giá trị của m để hàm số đồng biến trên \(\left( {3;\;5} \right).\)
Cho hàm số \(y = f\left( x \right)\) xác định và liên tục trên R, có đạo hàm \(f'\left( x \right)\). Biết rằng đồ thị hàm số \(f'\left( x \right)\) như hình vẽ. Xác định điểm cực đại của hàm số \(g\left( x \right) = f\left( x \right) + x\).
Tìm tất cả các giá trị của tham số \(m\) để phương trình \({\left( {7 - 3\sqrt 5 } \right)^{{x^2}}} + m{\left( {7 + 3\sqrt 5 } \right)^{{x^2}}} = {2^{{x^2} - 1}}\) có đúng bốn nghiệm phân biệt.
Cho hàm số \(y = {\log _{\frac{1}{2}}}\left| x \right|.\) Mệnh đề nào dưới đây là mệnh đề sai?
Cho hàm số \(y = f\left( x \right)\) có \(f'\left( x \right) > 0\,\,\forall x \in R\). Tìm tập hợp tất cả các giá trị thực của x để \(f\left( {\dfrac{1}{x}} \right) < f\left( 1 \right)\).
Trên đồ thị \(\left( C \right):\,\,y = \dfrac{{x + 1}}{{x + 2}}\) có bao nhiêu điểm M mà tiếp tuyến với \(\left( C \right)\) tại M song song với đường thẳng \(d:\,\,x + y = 1\).
Cho hình chóp S.ABCD có \(SC = x\,\,\left( {0 < x < a\sqrt 3 } \right)\), các cạnh còn lại đều bằng a. Biết rằng thể tích khối chóp S.ABCD lớn nhất khi và chỉ khi \(x = \dfrac{{a\sqrt m }}{n}\,\,\left( {m,n \in {N^*}} \right)\). Mệnh đề nào sau đây đúng?
Cho x là số thực dương, khai triển nhị thức \({\left( {{x^2} + \dfrac{1}{x}} \right)^{12}}\) ta có hệ số của số hạng chứa \({x^m}\) bằng 792. Giá trị của m là: