Tìm tất cả các giá trị của tham số m để phương trình \({x^3} + 3{x^2} - 2 = m\) có hai nghiệm phân biệt.
A. \(m \in \left( { - \infty ; - 2} \right]\)
B. \(m \notin \left[ { - 2;\;2} \right]\)
C. \(m \in \left[ {2; + \infty } \right)\)
D. \(m \in \left\{ { - 2;\;2} \right\}\)
Lời giải của giáo viên
Số nghiệm của phương trình \({x^3} + 3{x^2} - 2 = m\) là số giao điểm của đồ thị hàm số \(y = {x^3} + 3{x^2} - 2\) và đường thẳng \(y = m.\)
Ta có: \(y' = 3{x^2} + 6x = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = - 2\end{array} \right..\) Ta có đồ thị hàm số như hình vẽ :
Quan sát đồ thị hàm số ta có: đường thẳng \(y = m\) cắt đồ thị hàm số \(y = {x^3} + 3{x^2} - 2\) tại 2 điểm phân biệt \( \Leftrightarrow \left[ \begin{array}{l}m = 2\\m = - 2\end{array} \right..\)
Chọn D.
CÂU HỎI CÙNG CHỦ ĐỀ
Tìm nguyên hàm của hàm số \(f\left( x \right) = \dfrac{1}{{x{{\left( {\ln x + 2} \right)}^2}}}\).
Trong không gian với hệ tọa độ Oxyz, cho \(A\left( { - 3;0;0} \right);\,\,B\left( {0;0;3} \right);\,\,C\left( {0; - 3;0} \right)\) và mặt phẳng \(\left( P \right):\,\,x + y + z - 3 = 0\). Tìm trên (P) điểm M sao cho \(\left| {\overrightarrow {MA} + \overrightarrow {MB} - \overrightarrow {MC} } \right|\) nhỏ nhất.
Một hộp sữa hình trụ có thể tích V (không đổi) được làm từ một tấm tôn có diện tích đủ lớn. Nếu hộp sữa chỉ kín một đáy thì để tốn ít vật liệu nhất, hệ thức giữa bán kính đáy R và đường cao h bằng:
Xác định các hệ số \(a,\;b,\;c\) để đồ thị hàm số \(y = \dfrac{{ax - 1}}{{bx + c}}\) có đồ thị hàm số như hình vẽ bên:
Cho hàm số \(f\left( x \right)\) thỏa mãn \({\left[ {f'\left( x \right)} \right]^2} + f\left( x \right).f''\left( x \right) = {x^3} - 2x\;\;\forall x \in R\) và \(f\left( 0 \right) = f'\left( 0 \right) = 2.\) Tính giá trị của \(T = {f^2}\left( 2 \right).\)
Giá trị lớn nhất của hàm số \(y = {x^2} + \dfrac{{16}}{x}\) trên đoạn \(\left[ {\dfrac{3}{2};\;4} \right]\) bằng:
Cho hàm số \(y = f\left( x \right)\) xác định và liên tục trên R, có đạo hàm \(f'\left( x \right)\). Biết rằng đồ thị hàm số \(f'\left( x \right)\) như hình vẽ. Xác định điểm cực đại của hàm số \(g\left( x \right) = f\left( x \right) + x\).
Cho hàm số \(y = {\log _{\frac{1}{2}}}\left| x \right|.\) Mệnh đề nào dưới đây là mệnh đề sai?
Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(y' = {x^2} - 3x + {m^2} + 5m + 6.\) Tìm tất cả các giá trị của m để hàm số đồng biến trên \(\left( {3;\;5} \right).\)
Với \(a\) và \(b\) là hai số thực dương, \(a \ne 1.\) Giá trị của \({a^{{{\log }_a}{b^3}}}\) bằng:
Tìm tất cả các giá trị của tham số \(m\) để phương trình \({\left( {7 - 3\sqrt 5 } \right)^{{x^2}}} + m{\left( {7 + 3\sqrt 5 } \right)^{{x^2}}} = {2^{{x^2} - 1}}\) có đúng bốn nghiệm phân biệt.
Cho hàm số \(y = f\left( x \right)\) có \(f'\left( x \right) > 0\,\,\forall x \in R\). Tìm tập hợp tất cả các giá trị thực của x để \(f\left( {\dfrac{1}{x}} \right) < f\left( 1 \right)\).
Cho x là số thực dương, khai triển nhị thức \({\left( {{x^2} + \dfrac{1}{x}} \right)^{12}}\) ta có hệ số của số hạng chứa \({x^m}\) bằng 792. Giá trị của m là:
Cho hình chóp S.ABCD có \(SC = x\,\,\left( {0 < x < a\sqrt 3 } \right)\), các cạnh còn lại đều bằng a. Biết rằng thể tích khối chóp S.ABCD lớn nhất khi và chỉ khi \(x = \dfrac{{a\sqrt m }}{n}\,\,\left( {m,n \in {N^*}} \right)\). Mệnh đề nào sau đây đúng?