Anh C đi làm với mức lương khởi điểm là x (triệu đồng/tháng), và số tiền lương này được nhận vào ngày đầu tháng. Vì làm việc chăm chỉ và có trách nhiệm nên sau 36 tháng kể từ ngày đi làm, anh C được tăng lương thêm 10%. Mỗi tháng, anh ta giữ lại 20% số tiền lương để gửi tiết kiệm vào ngân hàng với kì hạn 1 tháng và lãi suất là 0,5% / tháng theo hình thức lãi kép (tức là tiền lãi của tháng này được nhập vào vốn để tính lãi cho tháng tiếp theo). Sau 48 tháng kể từ ngày đi làm, anh C nhận được số tiền cả gốc và lãi là 100 triệu đồng. Hỏi mức lương khởi điểm của người đó là bao nhiêu?
A. 8.991.504 đồng.
B.
9.891.504 đồng.
C. 8.981.504 đồng.
D. 9.881.505 đồng.
Lời giải của giáo viên
Số tiền gốc ban đầu gửi vào mỗi tháng là: A = 0,2x
Số tiền cả gốc và lãi sau 3 năm (36 tháng) là: \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBa % aaleaacaaIXaaabeaakiabg2da9iaadgeadaqadaqaaiaaigdacqGH % RaWkcaWGYbaacaGLOaGaayzkaaWaaSaaaeaadaqadaqaaiaaigdacq % GHRaWkcaWGYbaacaGLOaGaayzkaaWaaWbaaSqabeaacaaIZaGaaGOn % aaaakiabgkHiTiaaigdaaeaacaWGYbaaaiabg2da9iaaicdacaGGSa % GaaGOmaiaadIhadaqadaqaaiaaigdacqGHRaWkcaWGYbaacaGLOaGa % ayzkaaWaaSaaaeaadaqadaqaaiaaigdacqGHRaWkcaWGYbaacaGLOa % GaayzkaaWaaWbaaSqabeaacaaIZaGaaGOnaaaakiabgkHiTiaaigda % aeaacaWGYbaaaaaa!56D9! {A_1} = A\left( {1 + r} \right)\frac{{{{\left( {1 + r} \right)}^{36}} - 1}}{r} = 0,2x\left( {1 + r} \right)\frac{{{{\left( {1 + r} \right)}^{36}} - 1}}{r}\)
Bắt đầu từ tháng 37, số tiền gốc gửi vào ngân hàng là: \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca % WG4bGaey4kaSIaamiEaiaac6cacaaIXaGaaGimaiaacwcaaiaawIca % caGLPaaacaGGUaGaaGOmaiaaicdacaGGLaGaeyypa0JaaGimaiaacY % cacaaIYaGaaGOmaiaadIhaaaa!44DE! \left( {x + x.10\% } \right).20\% = 0,22x\)
Số tiền cả gốc và lãi sau 4 năm (48 tháng) là: \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBa % aaleaacaaIXaaabeaakmaabmaabaGaaGymaiabgUcaRiaadkhaaiaa % wIcacaGLPaaadaahaaWcbeqaaiaaigdacaaIYaaaaOGaey4kaSIaaG % imaiaacYcacaaIYaGaaGOmaiaadIhadaqadaqaaiaaigdacqGHRaWk % caWGYbaacaGLOaGaayzkaaWaaSaaaeaadaqadaqaaiaaigdacqGHRa % WkcaWGYbaacaGLOaGaayzkaaWaaWbaaSqabeaacaaIXaGaaGOmaaaa % kiabgkHiTiaaigdaaeaacaWGYbaaaiabg2da9iaaigdacaaIWaGaaG % imaiaac6cacaaIWaGaaGimaiaaicdacaGGUaGaaGimaiaaicdacaaI % Waaaaa!57C2! {A_1}{\left( {1 + r} \right)^{12}} + 0,22x\left( {1 + r} \right)\frac{{{{\left( {1 + r} \right)}^{12}} - 1}}{r} = 100.000.000\)
\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyi1HSTaaG % imaiaacYcacaaIYaGaamiEamaabmaabaGaaGymaiabgUcaRiaadkha % aiaawIcacaGLPaaadaahaaWcbeqaaiaaigdacaaIZaaaaOWaaSaaae % aadaqadaqaaiaaigdacqGHRaWkcaWGYbaacaGLOaGaayzkaaWaaWba % aSqabeaacaaIZaGaaGOnaaaakiabgkHiTiaaigdaaeaacaWGYbaaai % abgUcaRiaaicdacaGGSaGaaGOmaiaaikdacaWG4bWaaeWaaeaacaaI % XaGaey4kaSIaamOCaaGaayjkaiaawMcaamaalaaabaWaaeWaaeaaca % aIXaGaey4kaSIaamOCaaGaayjkaiaawMcaamaaCaaaleqabaGaaGym % aiaaikdaaaGccqGHsislcaaIXaaabaGaamOCaaaacqGH9aqpcaaIXa % GaaGimaiaaicdacaGGUaGaaGimaiaaicdacaaIWaGaaiOlaiaaicda % caaIWaGaaGimaaaa!640B! \Leftrightarrow 0,2x{\left( {1 + r} \right)^{13}}\frac{{{{\left( {1 + r} \right)}^{36}} - 1}}{r} + 0,22x\left( {1 + r} \right)\frac{{{{\left( {1 + r} \right)}^{12}} - 1}}{r} = 100.000.000\)
\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H4Taam % iEaiabgIKi7kaaiIdacaGGUaGaaGyoaiaaiMdacaaIXaGaaiOlaiaa % iwdacaaIWaGaaGinaaaa!419C! \Rightarrow x \approx 8.991.504\)đồng
CÂU HỎI CÙNG CHỦ ĐỀ
Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaabm % aabaGaaGOmaiaacUdacaaIXaGaai4oaiaaiodaaiaawIcacaGLPaaa % caGGSaGaamOqamaabmaabaGaaGOnaiaacUdacaaI1aGaai4oaiaaiw % daaiaawIcacaGLPaaaaaa!42B0! A\left( {2;1;3} \right),B\left( {6;5;5} \right)\). Gọi (S) là mặt cầu đường kính AB . Mặt phẳng (P) vuông góc với AB tại H sao cho khối nón đỉnh A và đáy là hình tròn tâm H (giao của mặt cầu (S) và mặt phẳng (P) ) có thể tích lớn nhất, biết rằng \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca % WGqbaacaGLOaGaayzkaaGaaiOoaiaaikdacaWG4bGaey4kaSIaamOy % aiaadMhacqGHRaWkcaWGJbGaamOEaiabgUcaRiaadsgacqGH9aqpca % aIWaaaaa!43E3! \left( P \right):2x + by + cz + d = 0\) với \(b,c,d \in Z\). Tính S = b+c+d.
Trong không gian Oxyz, cho mặt cầu \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca % WGtbaacaGLOaGaayzkaaGaaiOoamaabmaabaGaamiEaiabgkHiTiaa % igdaaiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaGccqGHRaWkda % qadaqaaiaadMhacqGHRaWkcaaIYaaacaGLOaGaayzkaaWaaWbaaSqa % beaacaaIYaaaaOGaey4kaSYaaeWaaeaacaWG6bGaeyOeI0IaaG4maa % GaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaakiabg2da9iaaikda % caaI3aaaaa!4CB7! \left( S \right):{\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z - 3} \right)^2} = 27\). Gọi \((\alpha)\) là mặt phẳng đi qua hai điểm \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaabm % aabaGaaGimaiaacUdacaaIWaGaai4oaiabgkHiTiaaisdaaiaawIca % caGLPaaacaGGSaGaamOqamaabmaabaGaaGOmaiaacUdacaaIWaGaai % 4oaiaaicdaaiaawIcacaGLPaaaaaa!438D! A\left( {0;0; - 4} \right),B\left( {2;0;0} \right)\) và cắt (S) theo giao tuyến là đường tròn (C). Xét các khối nón có đỉnh là tâm của (S) và đáy là ( C ). Biết rằng khi thể tích của khối nón lớn nhất thì mặt phẳng \((\alpha)\) có phương trình dạng \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiaadI % hacqGHRaWkcaWGIbGaamyEaiabgkHiTiaadQhacqGHRaWkcaWGKbGa % eyypa0JaaGimaaaa!4014! ax + by - z + d = 0\). Tính P = a + b + c.
Trong các số phức z thỏa mãn \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaada % WcaaqaamaabmaabaGaaGymaiaaikdacqGHsislcaaI1aGaamyAaaGa % ayjkaiaawMcaaiaadQhacqGHRaWkcaaIXaGaaG4naiabgUcaRiaaiE % dacaWGPbaabaGaamOEaiabgkHiTiaaikdacqGHsislcaWGPbaaaaGa % ay5bSlaawIa7aiabg2da9iaaigdacaaIZaaaaa!4BAE! \left| {\frac{{\left( {12 - 5i} \right)z + 17 + 7i}}{{z - 2 - i}}} \right| = 13\). Tìm giá trị nhỏ nhất của |z|.
Cho hàm số f(x), đồ thị hàm số f’(x) như hình vẽ.
Hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zamaabm % aabaGaamiEaaGaayjkaiaawMcaaiabg2da9iaadAgadaqadaqaaiaa % dIhadaahaaWcbeqaaiaaikdaaaaakiaawIcacaGLPaaacqGHsislda % WcaaqaaiaadIhadaahaaWcbeqaaiaaiAdaaaaakeaacaaIZaaaaiab % gUcaRiaadIhadaahaaWcbeqaaiaaisdaaaGccqGHsislcaWG4bWaaW % baaSqabeaacaaIYaaaaaaa!4824! g\left( x \right) = f\left( {{x^2}} \right) - \frac{{{x^6}}}{3} + {x^4} - {x^2}\) đạt cực tiểu tại bao nhiêu điểm?
: Trong các số phức z thỏa mãn \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaaca % WG6bWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGymaaGaay5bSlaa % wIa7aiabg2da9iaaikdadaabdaqaaiaadQhaaiaawEa7caGLiWoaaa % a!4287! \left| {{z^2} + 1} \right| = 2\left| z \right|\) gọi \(z_1\) và \(z_2\) lần lượt là các số phức có môđun nhỏ nhất và lớn nhất. Giá trị của biểu thức \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaaca % WG6bWaaSbaaSqaaiaaigdaaeqaaaGccaGLhWUaayjcSdWaaWbaaSqa % beaacaaIYaaaaOGaey4kaSYaaqWaaeaacaWG6bWaaSbaaSqaaiaaik % daaeqaaaGccaGLhWUaayjcSdWaaWbaaSqabeaacaaIYaaaaaaa!42D6! {\left| {{z_1}} \right|^2} + {\left| {{z_2}} \right|^2}\) bằng
Gọi \(z_1;z_2\) là các nghiệm phức của phương trình \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOEamaaCa % aaleqabaGaaGOmaaaakiabgkHiTiaaikdacaWG6bGaey4kaSIaaGyn % aiabg2da9iaaicdaaaa!3DEE! {z^2} - 2z + 5 = 0\). Giá trị của biểu thức \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOEamaaDa % aaleaacaaIXaaabaGaaGOmaaaakiabgUcaRiaadQhadaqhaaWcbaGa % aGOmaaqaaiaaikdaaaaaaa!3C26! z_1^2 + z_2^2\) bằng
Trong không gian Oxyz, cho mặt cầu \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca % WGtbaacaGLOaGaayzkaaGaaiOoaiaadIhadaahaaWcbeqaaiaaikda % aaGccqGHRaWkcaWG5bWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaam % OEamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaaikdacaWG4bGaeyOe % I0IaaGOmaiaadMhacqGHRaWkcaaI2aGaamOEaiabgkHiTiaaigdaca % aIXaGaeyypa0JaaGimaaaa!4CBA! \left( S \right):{x^2} + {y^2} + {z^2} - 2x - 2y + 6z - 11 = 0\). Tọa độ tâm mặt cầu (S) là I(a,b,c). Tính a + b + c.
Trong không gian Oxyz, cho mặt cầu \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca % WGtbaacaGLOaGaayzkaaGaaiOoamaabmaabaGaamiEaiabgkHiTiaa % igdaaiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaGccqGHRaWkda % qadaqaaiaadMhacqGHsislcaaIYaaacaGLOaGaayzkaaWaaWbaaSqa % beaacaaIYaaaaOGaey4kaSYaaeWaaeaacaWG6bGaeyOeI0IaaGymaa % GaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaakiabg2da9iaaioda % daahaaWcbeqaaiaaikdaaaaaaa!4CE9! \left( S \right):{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 1} \right)^2} = {3^2}\) , mặt phẳng \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca % WGqbaacaGLOaGaayzkaaGaaiOoaiaadIhacqGHsislcaWG5bGaey4k % aSIaamOEaiabgUcaRiaaiodacqGH9aqpcaaIWaaaaa!4137! \left( P \right):x - y + z + 3 = 0\) và điểm N(1;0;-4) thuộc (P). Một đường thẳng \(\Delta\) đi qua N nằm trong (P) cắt (S) tại hai điểm A,B thỏa mãn AB =4. Gọi \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8Haaeaaca % WG1baacaGLxdcacqGH9aqpdaqadaqaaiaaigdacaGG7aGaamOyaiaa % cUdacaWGJbaacaGLOaGaayzkaaGaaiilamaabmaabaGaam4yaiabg6 % da+iaaicdaaiaawIcacaGLPaaaaaa!441B! \overrightarrow u = \left( {1;b;c} \right),\left( {c > 0} \right)\) là một vecto chỉ phương của \(\Delta\), tổng b+c bằng
Diện tích hình phẳng giới hạn bởi đồ thị hàm số bậc ba y = f(x) và các trục tọa độ là S = 32 (hình vẽ bên). Tính thể tích vật tròn xoay được tạo thành khi quay hình phẳng trên quanh trục Ox.
Cho hàm số y =f(x), biết tại các điểm A,B,C đồ thị hàm số có tiếp tuyến được thể hiện trên hình vẽ bên. Mệnh đề nào dưới đây đúng?
Cho hình nón có đường cao và đường kính đáy cùng bằng 2a. Cắt hình nón đã cho bởi một mặt phẳng qua trục, diện tích thiết diện bằng
Cho hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabg2 % da9maalaaabaGaaGOmaiaadIhacqGHsislcaaIZaaabaGaamiEaiab % gkHiTiaaikdaaaaaaa!3E10! y = \frac{{2x - 3}}{{x - 2}}\) có đồ thị (C). Gọi I là giao điểm của các đường tiệm cận của (C). Biết rằng tồn tại hai điểm M thuộc đồ thị (C) sao cho tiếp tuyến tại M của ( C) tạo với các đường tiệm cận một tam giác có chu vi nhỏ nhất. Tổng hoành độ của hai điểm M là
Cho hai số phức \(z_1,z_2\) thỏa mãn \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaaca % WG6bWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaaGOmaiabgUcaRiaa % iodacaWGPbaacaGLhWUaayjcSdGaeyypa0JaaGynamaaemaabaGaam % OEamaaBaaaleaacaaIYaaabeaakiabgUcaRiaaikdacqGHRaWkcaaI % ZaGaamyAaaGaay5bSlaawIa7aiabg2da9iaaiodaaaa!4BF6! \left| {{z_1} + 2 + 3i} \right| = 5\left| {{z_2} + 2 + 3i} \right| = 3\). Gọi \(m_0\) là giá trị lớn nhất của phần thực số phức \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca % WG6bWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaaGOmaiabgUcaRiaa % iodacaWGPbaabaGaamOEamaaBaaaleaacaaIYaaabeaakiabgUcaRi % aaikdacqGHRaWkcaaIZaGaamyAaaaaaaa!423A! \frac{{{z_1} + 2 + 3i}}{{{z_2} + 2 + 3i}}\). Tìm \(m_0\) .
Cho hàm số y =f(x) xác định, liên tục trên R và có bảng biến thiên như hình dưới đây. Đồ thị hàm số y =f(x) cắt đường thẳng y = -2019 tại bao nhiêu điểm?
Trong không gian với hệ tọa độ Oxyz, cho \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaabm % aabaGaamyyaiaacUdacaaIWaGaai4oaiaaicdaaiaawIcacaGLPaaa % caGGSaGaamOqamaabmaabaGaaGimaiaacUdacaWGIbGaai4oaiaaic % daaiaawIcacaGLPaaacaGGSaGaam4qamaabmaabaGaaGimaiaacUda % caaIWaGaai4oaiaadogaaiaawIcacaGLPaaaaaa!49CE! A\left( {a;0;0} \right),B\left( {0;b;0} \right),C\left( {0;0;c} \right)\) và a,b,c dương. Biết rằng khi A,B,C di động trên các tia Ox,Oy,Oz sao cho a+b+c=2018 và khi a,b,c thay đổi thì quỹ tích tâm hình cầu ngoại tiếp tứ diện OABC luôn thuộc mặt phẳng (P) cố định. Tính khoảng cách từ M(1;0;0) tới mặt phẳng (P).