Lời giải của giáo viên
Từ BBT ta có \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = - \infty ;\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = + \infty \) nên loại C và D.
Ta thấy điểm (3;-1) thuộc đồ thị hàm số \(f(x)\) nên thay \(x = 3;y = - 1\) vào hai hàm số ở phương án A và phương án B ta thấy chỉ có hàm số \(y = {x^3} - 6{x^2} + 9x - 1\) thỏa mãn nên hàm số cần tìm là \(y = {x^3} - 6{x^2} + 9x - 1.\)
CÂU HỎI CÙNG CHỦ ĐỀ
Tìm đạo hàm của hàm số \(y = \ln \left( {1 + {e^{2x}}} \right).\)
Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ. Tìm kết luận đúng
Cho hàm số \(f(x)\) có đồ thị như hình vẽ bên. Bất phương trình \(f\left( {{e^x}} \right) < m\left( {3{e^x} + 2019} \right)\) có nghiệm \(x \in (0;1)\) khi và chỉ khi
Với n là số nguyên dương, biểu thức \(T = C_n^0 + C_n^1 + ... + C_n^n\) bằng
Tiếp tuyến của đồ thị hàm số \(y = \frac{{ - x + 1}}{{3x - 2}}\) tại giao điểm của đồ thị hàm số với trục tung có hệ số góc là:
Hàm số \(y = 2{x^3} - {x^2} + 5\) có điểm cực đại là:
Một khối lăng trụ tứ giác đều có thể tích là 4. Nếu gấp đôi các cạnh đáy đồng thời giảm chiều cao của khối lăng trụ này hai lần thì được khối lăng trụ mới có thể tích là:
Cho a, b là hai số thực dương tùy ý và \(b \ne 1.\) Tìm kết luận đúng.
Cho hàm số \(f(x)\) có đạo hàm \(f'\left( x \right) = x{\left( {x - 1} \right)^2}{\left( {x - 2} \right)^3}{\left( {x - 3} \right)^4}.\) Số điểm cực trị của hàm số đã cho là
Mỗi bạn An , Bình chọn ngẫu nhiên 3 chữ số trong tập \(\left\{ {0,1,2,3,4,5,6,7,8,9} \right\}.\) Tính xác suất để trong hai bộ ba chữ số mà An, Bình chọn ra có đúng một chữ số giống nhau.
Có bao nhiêu số nguyên dương là ước của 2592 hoặc là ước của 2916?
Hình lập phương có độ dài đường chéo là 6 thì có thể tích là
Từ một nhóm có 10 học sinh nam và 8 học sinh nữ, có bao nhiêu cách chọn ra 5 học sinh trong đó có 3 học sinh nam và 2 học sinh nữ?
Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ bên. Hàm số đã cho đồng biến trên khoảng nào sau đây?
Cho \(n, k\) là những số nguyên thỏa mãn \(0 \le k \le n\) và \(n \ge 1.\) Tìm khẳng định sai.