Bất phương trình \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac+ % gacaGGNbWaaSbaaSqaaiaaisdaaeqaaOWaaeWaaeaacaWG4bWaaWba % aSqabeaacaaIYaaaaOGaeyOeI0IaaG4maiaadIhaaiaawIcacaGLPa % aacqGH+aGpciGGSbGaai4BaiaacEgadaWgaaWcbaGaaGOmaaqabaGc % daqadaqaaiaaiMdacqGHsislcaWG4baacaGLOaGaayzkaaaaaa!48D8! {\log _4}\left( {{x^2} - 3x} \right) > {\log _2}\left( {9 - x} \right)\) có bao nhiêu nghiệm nguyên?
A. vô số
B. 1
C. 4
D. 3
Lời giải của giáo viên
Điều kiện : \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiqaaqaabe % qaaiaadIhadaahaaWcbeqaaiaaikdaaaGccqGHsislcaaIZaGaamiE % aiabg6da+iaaicdaaeaacaaI5aGaeyOeI0IaamiEaiabg6da+iaaic % daaaGaay5EaaGaeyi1HS9aaiqaaqaabeqaaiaadIhadaqadaqaaiaa % dIhacqGHsislcaaIZaaacaGLOaGaayzkaaGaeyOpa4JaaGimaaqaai % aadIhacqGH8aapcaaI5aaaaiaawUhaaiabgsDiBpaaceaaeaqabeaa % daWabaabaeqabaGaamiEaiabg6da+iaaiodaaeaacaWG4bGaeyipaW % JaaGimaaaacaGLBbaaaeaacaWG4bGaeyipaWJaaGyoaaaacaGL7baa % cqGHuhY2daWabaabaeqabaGaamiEaiabgYda8iaaicdaaeaacaaIZa % GaeyipaWJaamiEaiabgYda8iaaiMdaaaGaay5waaaaaa!666B! \left\{ \begin{array}{l} {x^2} - 3x > 0\\ 9 - x > 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x\left( {x - 3} \right) > 0\\ x < 9 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} \left[ \begin{array}{l} x > 3\\ x < 0 \end{array} \right.\\ x < 9 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x < 0\\ 3 < x < 9 \end{array} \right.\)
\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaaciGGSb % Gaai4BaiaacEgadaWgaaWcbaGaaGinaaqabaGcdaqadaqaaiaadIha % daahaaWcbeqaaiaaikdaaaGccqGHsislcaaIZaGaamiEaaGaayjkai % aawMcaaiabg6da+iGacYgacaGGVbGaai4zamaaBaaaleaacaaIYaaa % beaakmaabmaabaGaaGyoaiabgkHiTiaadIhaaiaawIcacaGLPaaacq % GHuhY2daWcaaqaaiaaigdaaeaacaaIYaaaaiGacYgacaGGVbGaai4z % amaaBaaaleaacaaIYaaabeaakmaabmaabaGaamiEamaaCaaaleqaba % GaaGOmaaaakiabgkHiTiaaiodacaWG4baacaGLOaGaayzkaaGaeyOp % a4JaciiBaiaac+gacaGGNbWaaSbaaSqaaiaaikdaaeqaaOWaaeWaae % aacaaI5aGaeyOeI0IaamiEaaGaayjkaiaawMcaaaqaaiabgsDiBlGa % cYgacaGGVbGaai4zamaaBaaaleaacaaIYaaabeaakmaabmaabaGaam % iEamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaaiodacaWG4baacaGL % OaGaayzkaaGaeyOpa4JaaGOmaiGacYgacaGGVbGaai4zamaaBaaale % aacaaIYaaabeaakmaabmaabaGaaGyoaiabgkHiTiaadIhaaiaawIca % caGLPaaacqGHuhY2ciGGSbGaai4BaiaacEgadaWgaaWcbaGaaGOmaa % qabaGcdaqadaqaaiaadIhadaahaaWcbeqaaiaaikdaaaGccqGHsisl % caaIZaGaamiEaaGaayjkaiaawMcaaiabg6da+iGacYgacaGGVbGaai % 4zamaaBaaaleaacaaIYaaabeaakmaabmaabaGaaGyoaiabgkHiTiaa % dIhaaiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaaakeaacqGHuh % Y2caWG4bWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaaG4maiaadIha % cqGH+aGpcaaI4aGaaGymaiabgkHiTiaaigdacaaI4aGaamiEaiabgU % caRiaadIhadaahaaWcbeqaaiaaikdaaaaakeaacqGHuhY2caaIXaGa % aGynaiaadIhacqGH+aGpcaaI4aGaaGymaiabgsDiBlaadIhacqGH+a % GpdaWcaaqaaiaaiIdacaaIXaaabaGaaGymaiaaiwdaaaGaeyi1HSTa % amiEaiabg6da+maalaaabaGaaGOmaiaaiEdaaeaacaaI1aaaaaaaaa!B0EF! \begin{array}{l} {\log _4}\left( {{x^2} - 3x} \right) > {\log _2}\left( {9 - x} \right) \Leftrightarrow \frac{1}{2}{\log _2}\left( {{x^2} - 3x} \right) > {\log _2}\left( {9 - x} \right)\\ \Leftrightarrow {\log _2}\left( {{x^2} - 3x} \right) > 2{\log _2}\left( {9 - x} \right) \Leftrightarrow {\log _2}\left( {{x^2} - 3x} \right) > {\log _2}{\left( {9 - x} \right)^2}\\ \Leftrightarrow {x^2} - 3x > 81 - 18x + {x^2}\\ \Leftrightarrow 15x > 81 \Leftrightarrow x > \frac{{81}}{{15}} \Leftrightarrow x > \frac{{27}}{5} \end{array}\)
Kết hợp với điều kiện xác định ta có bất phương trình có tập nghiệm là: \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca % aIYaGaaG4naaqaaiaaiwdaaaGaeyipaWJaamiEaiabgYda8iaaiMda % aaa!3C08! \frac{{27}}{5} < x < 9\)
Mà \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgI % GiolablssiIkabgkDiElaadIhacqGHiiIZdaGadaqaaiaaiAdacaGG % 7aGaaG4naiaacUdacaaI4aaacaGL7bGaayzFaaaaaa!44BD! x \in Z \Rightarrow x \in \left\{ {6;7;8} \right\}\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho số phức z = -2+ i . Trong hình bên điểm biểu diễn số phức \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0aaaeaaca % WG6baaaaaa!3704! \overline z \) là:
Trong không gian Oxyz, cho hai điểm A(-2;-1;3) và B( 0 ; 3 ;1) . Gọi \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacq % aHXoqyaiaawIcacaGLPaaaaaa!391C! \left( \alpha \right)\) là mặt phẳng trung trực của AB. Một vecto pháp tuyến của \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacq % aHXoqyaiaawIcacaGLPaaaaaa!391C! \left( \alpha \right)\) có tọa độ là:
Biết rằng \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaadw % gadaahaaWcbeqaaiaadIhaaaaaaa!3905! x{e^x}\) là một nguyên hàm của hàm số f(-x) trên khoảng \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacq % GHsislcqGHEisPcaGG7aGaey4kaSIaeyOhIukacaGLOaGaayzkaaaa % aa!3CED! \left( { - \infty ; + \infty } \right)\). Gọi F(x) là một nguyên hàm của \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacE % cadaqadaqaaiaadIhaaiaawIcacaGLPaaacaWGLbWaaWbaaSqabeaa % caWG4baaaaaa!3C24! f'\left( x \right){e^x}\) thỏa mãn F(0) = 1, giá trị của F(-1) bằng:
Cho \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaabm % aabaGaamiEaaGaayjkaiaawMcaaiabg2da9maabmaabaGaamiEaiab % gkHiTiaaigdaaiaawIcacaGLPaaadaahaaWcbeqaaiaaiodaaaGccq % GHsislcaaIZaGaamiEaiabgUcaRiaaiodaaaa!43D3! f\left( x \right) = {\left( {x - 1} \right)^3} - 3x + 3\). Đồ thị hình bên là của hàm số có công thức:
Từ các chữ số 1; 2; 3;…; 9 lập được bao nhiêu số có 3 chữ số đôi một khác nhau
Trong không gian Oxyz, một vecto chỉ phương của đường thẳng \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaai % OoamaalaaabaGaamiEaiabgkHiTiaaigdaaeaacaaIXaaaaiabg2da % 9maalaaabaGaamyEaiabgUcaRiaaiodaaeaacaaIYaaaaiabg2da9m % aalaaabaGaamOEaiabgkHiTiaaiodaaeaacqGHsislcaaI1aaaaaaa % !4562! \Delta :\frac{{x - 1}}{1} = \frac{{y + 3}}{2} = \frac{{z - 3}}{{ - 5}}\) có tọa độ là:
Trong không gian Oxyz, cho đường thẳng \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiaacQ % dadaWcaaqaaiaadIhacqGHsislcaaIZaaabaGaaGOmaaaacqGH9aqp % daWcaaqaaiaadMhacqGHsislcaaI0aaabaGaaGymaaaacqGH9aqpda % WcaaqaaiaadQhacqGHsislcaaIYaaabaGaaGymaaaaaaa!4401! d:\frac{{x - 3}}{2} = \frac{{y - 4}}{1} = \frac{{z - 2}}{1}\) và 2 điểm A( 6;3;-2); B(1;0;-1). Gọi \(\Delta\) là đường thẳng đi qua B, vuông góc với d và thỏa mãn khoảng cách từ A đến \(\Delta\) là nhỏ nhất. Một vectơ chỉ phương của có tọa độ:
Cho hình chóp SABCD có đáy ABCD là hình vuông cạnh a , SA = a và SA \(\bot\) (ABCD). Thể tích khối chóp SABCD bằng:
Cho hình hộp ABCD.A'B'C'D' có thể tích bằng V.Gọi M, N, P, Q, E, F lần lượt là tâm các hình bình hành ABCD,A'B'C'D', ABA'B', BCB'C',DAA'D'. Thể tích khối đa diện có các đỉnh M, P, Q, E, F, N bằng:
Biết \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeaada % WcaaqaaiGacogacaGGVbGaai4CamaaCaaaleqabaGaaGOmaaaakiaa % dIhacqGHRaWkciGGZbGaaiyAaiaac6gacaaMc8UaamiEaiGacogaca % GGVbGaai4CaiaadIhacqGHRaWkcaaIXaaabaGaci4yaiaac+gacaGG % ZbWaaWbaaSqabeaacaaI0aaaaOGaamiEaiabgUcaRiGacohacaGGPb % GaaiOBaiaaykW7caWG4bGaci4yaiaac+gacaGGZbWaaWbaaSqabeaa % caaIZaaaaOGaamiEaaaacaWGKbGaamiEaaWcbaWaaSaaaeaacqaHap % aCaeaacaaI0aaaaaqaamaalaaabaGaeqiWdahabaGaaG4maaaaa0Ga % ey4kIipakiabg2da9iaadggacqGHRaWkcaWGIbGaciiBaiaac6gaca % aIYaGaey4kaSIaam4yaiGacYgacaGGUbWaaeWaaeaacaaIXaGaey4k % aSYaaOaaaeaacaaIZaaaleqaaaGccaGLOaGaayzkaaaaaa!6DBA! \int\limits_{\frac{\pi }{4}}^{\frac{\pi }{3}} {\frac{{{{\cos }^2}x + \sin \,x\cos x + 1}}{{{{\cos }^4}x + \sin \,x{{\cos }^3}x}}dx} = a + b\ln 2 + c\ln \left( {1 + \sqrt 3 } \right)\), với a, b, c là các số hữu tỉ. Giá trị của abc bằng:
Có bao nhiêu số nguyên \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgI % GiopaabmaabaGaeyOeI0IaaGOmaiaaicdacaaIXaGaaGyoaiaacUda % caaIYaGaaGimaiaaigdacaaI5aaacaGLOaGaayzkaaaaaa!417B! a \in \left( { - 2019;2019} \right)\) để phương trình \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca % aIXaaabaGaciiBaiaac6gadaqadaqaaiaadIhacqGHRaWkcaaI1aaa % caGLOaGaayzkaaaaaiabgUcaRmaalaaabaGaaGymaaqaaiaaiodada % ahaaWcbeqaaiaadIhaaaGccqGHsislcaaIXaaaaiabg2da9iaadIha % cqGHRaWkcaWGHbaaaa!45DB! \frac{1}{{\ln \left( {x + 5} \right)}} + \frac{1}{{{3^x} - 1}} = x + a\) có hai nghiệm phân biệt?
Gọi (D) là hình phẳng giới hạn bởi các đường \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabg2 % da9iaaikdadaahaaWcbeqaaiaadIhaaaGccaGGSaGaamyEaiabg2da % 9iaaicdacaGGSaGaamiEaiabg2da9iaaicdaaaa!40C3! y = {2^x},y = 0,x = 0\) và x = 2. Thể tích V của khối tròn xoay tạo thành khi quay (D) quanh trục Ox được xác định bởi công thức:
Gọi \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOEamaaBa % aaleaacaaIXaaabeaakiaacYcacaWG6bWaaSbaaSqaaiaaikdaaeqa % aaaa!3A7B! {z_1},{z_2}\) là các nghiệm của phương trình \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOEamaaCa % aaleqabaGaaGOmaaaakiabgkHiTiaaikdacaWG6bGaey4kaSIaaG4m % aiabg2da9iaaicdaaaa!3DED! {z^2} - 2z + 3 = 0\). Modul của \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOEamaaDa % aaleaacaaIXaaabaGaaG4maaaakiaac6cacaWG6bWaa0baaSqaaiaa % ikdaaeaacaaI0aaaaaaa!3BFA! z_1^3.z_2^4\) bằng:
Cho hình chóp đều S.ABCD có \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiaadk % eacqGH9aqpcaaIYaGaamyyaiaacYcacaWGtbGaamyqaiabg2da9iaa % dggadaGcaaqaaiaaiwdaaSqabaaaaa!3F3D! AB = 2a,SA = a\sqrt 5 \) . Góc giữa hai mặt phẳng (SAB) và (ABCD) bằng:
Cho y =f(x) mà đồ thị hàm số y =f'(x) như hình bên. Hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabg2 % da9iaadAgadaqadaqaaiaadIhacqGHsislcaaIXaaacaGLOaGaayzk % aaGaey4kaSIaamiEamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaaik % dacaWG4baaaa!4289! y = f\left( {x - 1} \right) + {x^2} - 2x\) đồng biến trên khoảng?