Biết rằng đồ thị hàm số \(f\left( x \right)=\frac{1}{3}{{x}^{3}}-\frac{1}{2}m{{x}^{2}}+x-2\) có giá trị tuyệt đối của hoành độ hai điểm cực trị là độ dài hai cạnh của tam giác vuông có cạnh huyền là \(\sqrt{7}.\) Hỏi có mấy giá trị của m?
A. 0
B. 2
C. 3
D. 1
Lời giải của giáo viên
\(f\left( x \right)=\frac{1}{3}{{x}^{3}}-\frac{1}{2}m{{x}^{2}}+x-2.\)
\(f'\left( x \right)={{x}^{2}}-mx+1.\)
\(f'\left( x \right)=0\Leftrightarrow {{x}^{2}}-mx+1=0\left( 1 \right)\)
Để hàm số có 2 điểm cực trị \(\Leftrightarrow \) phương trình \(\left( 1 \right)\) có 2 nghiệm phân biệt.
\( \Leftrightarrow \Delta = {m^2} - 4 > 0 \Leftrightarrow \left[ \begin{array}{l} m < - 2\\ m > 2 \end{array} \right..\)
\(\left( 1 \right) \Leftrightarrow \left[ \begin{array}{l} {x_1} = \frac{{m + \sqrt {{m^2} - 4} }}{2}\\ {x_2} = \frac{{m - \sqrt {{m^2} - 4} }}{2} \end{array} \right. \Rightarrow \left[ \begin{array}{l} \left| {{x_1}} \right| = \frac{{\left| {m + \sqrt {{m^2} - 4} } \right|}}{2}\\ \left| {{x_2}} \right| = \frac{{\left| {m - \sqrt {{m^2} - 4} } \right|}}{2} \end{array} \right.\)
Ta có: \({\left| {{x_1}} \right|^2} + {\left| {{x_2}} \right|^2} = {\sqrt 7 ^2} \Leftrightarrow {\left( {m + \sqrt {{m^2} - 4} } \right)^2} + {\left( {m - \sqrt {{m^2} - 4} } \right)^2} = 7 \Leftrightarrow {m^2} = 9 \Leftrightarrow \left[ \begin{array}{l} m = 3\\ m = - 3 \end{array} \right..\)
CÂU HỎI CÙNG CHỦ ĐỀ
Tìm tập nghiệm của phương trình \({{4}^{{{x}^{2}}}}={{2}^{x+1}}\)
Cho hàm số \(y=f\left( x \right)\) có đạo hàm \(f'\left( x \right)={{x}^{2}}+1.\) Khẳng định nào sau đây đúng?
Cho hàm số \(y=f\left( x \right)\) có đồ thị \(f'\left( x \right)\) như hình vẽ
Hàm số \(y=f\left( 1-x \right)+\frac{{{x}^{2}}}{2}-x\) nghịch biến trên khoảng
Tập xác định của hàm số \({{\left( {{x}^{2}}-3x+2 \right)}^{\pi }}\) là
Tìm giá trị nhỏ nhất \(m\) của hàm số: \(y={{x}^{2}}+\frac{2}{x}\) trên đoạn \(\left[ \frac{1}{2};2 \right].\)
Giải phương trình \({{\log }_{3}}\left( 2x-1 \right)=1\)
Tìm tất cả các giá trị thực của tham số m để hàm số \(y={{x}^{3}}+{{x}^{2}}+mx+1\) đồng biến trên \(\left( -\infty ;+\infty \right).\)
Cho hàm số \(y=\frac{2x-m}{x+2}\) với m là tham số, \(m\ne -4.\) Biết \(\underset{x\in \left[ 0;2 \right]}{\mathop{\min }}\,f\left( x \right)+\underset{x\in \left[ 0;2 \right]}{\mathop{\max }}\,f\left( x \right)=-8.\) Giá trị của tham số m bằng
Cho hàm số \(y={{x}^{3}}-3x\) có đồ thị như hình vẽ bên. Phương trình \(\left| {{x}^{3}}-3x \right|={{m}^{2}}+m\) có 6 nghiệm phân biệt khi và chỉ khi:
Tập xác định của phương trình \(\sqrt{x-1}+\sqrt{x-2}=\sqrt{x-3}\) là
Cho hình lăng trụ ABC.A'B'C' trên các cạnh AA', BB' lấy các điểm M, N sao cho \(AA'=4A'M,BB'=4B'N.\) Mặt phẳng \(\left( C'MN \right)\) chia khối lăng trụ thành hai phần. Gọi \({{V}_{1}}\) là thể tích khối chóp C'.A'B'MN và \({{V}_{2}}\) là thể tích khối đa diện ABCMNC'. Tính tỷ số \(\frac{{{V}_{1}}}{{{V}_{2}}}\)
Số cách chọn 5 học sinh trong một lớp có 25 học sinh nam và 16 học sinh nữ là
Cho hình chóp tam giác \(S.ABC\) với \(SA,SB,SC\) đôi một vuông góc và \(SA=SB=SC=a.\) Tính thể tích của khối chóp \(S.ABC.\)
Tìm tất cả các giá trị thực của tham số a để biểu thức \(B={{\log }_{3}}\left( 2-a \right)\) có nghĩa
Cho hàm số \(y=f\left( x \right)\) có bảng biến thiên như sau:
Mệnh đề nào dưới đây đúng?