Lời giải của giáo viên
Xét số hạng tổng quát: \(k\frac{{C_n^k}}{{C_{n - 1}^k}} = \frac{{\frac{{k.n!}}{{k!\left( {n - k} \right)!}}}}{{\frac{{n!}}{{\left( {k - 1} \right)!\left( {n + 1 - k} \right)!}}}} = n + 1 - k,\) với \(k,b \in N;1 \le k \le n.\)
Do đó: \(C_n^1 + 2\frac{{C_n^2}}{{C_n^1}} + ... + n\frac{{C_n^n}}{{C_n^{n - 1}}} = 45 \Leftrightarrow n + (n - 1) + ... + 1 - 45 \Leftrightarrow \frac{{n(n + 1)}}{2} = 45 \Leftrightarrow {n^2} + n - 90 = 0\)
\( \Leftrightarrow \left[ \begin{array}{l}
n = 9\\
n = - 10(l)
\end{array} \right. \Rightarrow n = 9.\) Vậy \(C_{n + 4}^n = C_{13}^9 = 715.\)
CÂU HỎI CÙNG CHỦ ĐỀ
Hệ số của x5 trong khai triển \({\left( {1 - 2x - 3{x^2}} \right)^9}\) là
Tìm giá trị nhỏ nhất của hàm số \(y = {x^2} - 1\) trên đoạn [-3;2]?
Cho hình lập phương ABCD.A'B'C'D' cạnh a. Tính khoảng cách giữa hai đường thẳng AB' và CD'
Tất cả các nghiệm của phương trình \({\mathop{\rm tanx}\nolimits} = cotx\) là
Cho hàm số \(y = \sqrt {{x^2} - 1} .\) Mệnh đề nào dưới đây đúng?
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SAD là tam giác đều và nằm trong mặt phẳng vuông góc với (ABCD). Gọi M, N, P lần lượt là tủng điểm các cạnh SB, BC, CD. Tính thể tích khối tứ diện CMNP.
Cho cấp số cộng (un) có các số hạng đầu lần lượt là 5; 9; 13; 17; … Tìm công thức số hạng tổng quát un của cấp số cộng?
Cho hàm số \(y = \frac{{{x^2} + x}}{{x - 2}}\) có đồ thị (C). Phương trình tiếp tuyến tại điểm A(1;-2) của (C) là
Cho cấp số nhân (un) thỏa mãn \(\left\{ \begin{array}{l}
{u_1} - {u_3} + {u_5} = 65\\
{u_1} + {u_7} = 325
\end{array} \right..\) Tính u3.
Số tiệm cận ngang của đồ thị hàm số \(y = \frac{{\left| x \right| - 2018}}{{x + 2019}}\) là
Cho hàm số \(y=f(x)\) có bảng biến thiên như hình vẽ sau:
Khi đó số nghiệm của phương trình \(2\left| {f\left( {2x - 3} \right)} \right| - 5 = 0\) là:
Tất cả các giá trị của tham số m để hàm số \(y = \left( {m - 1} \right){x^4}\) đạt cực đại tại x = 0 là
Tung hai con súc sắc 3 lần độc lập với nhau. Tính xác suất để có đúng một lần tổng số chấm xuất hiện trên hai con súc sắc bằng 6. Kết quả làm tròn đến 3 ba chữ số ở phần thập phân)
Giá trị cực đại yCĐ của hàm số \(y = {x^3} - 12x + 20\) là
Cho một khối đa diện lồi có 10 đỉnh, 7 mặt. Hỏi khối đa diện này có mấy cạnh?